Nonlocality in Continuum Mechanics, Population Dynamics, and Neural Networks

连续体力学、群体动力学和神经网络中的非定域性

基本信息

  • 批准号:
    2109149
  • 负责人:
  • 金额:
    $ 34.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Nonlocal systems have been used to predict cracks and damage in dynamic fracture, to denoise images, and to provide more accurate models in binary fluids and in phase separation. This project concerns theories employed to model discontinuous, singular, or irregular behavior encountered in such applications. Currently, they are applied to study damage-resistant cover glass such as the one produced for cellphones, composite-based aircrafts, blades for wind turbines, oil and gas extraction, and in the nuclear energy industry, as in fracturing of concrete in extreme situations and storage of spent nuclear fuel. The project also aims to develop mathematical tools to advance the understanding of nonlocal models, with the goal of answering questions such as how much damage a specified force will induce in a material, what is the make-up of a population under given growth, decay, and diffusion rules, and how can efficiency and efficacy of neural networks performance be improved. The project provides opportunities for research training of graduate and undergraduate students. The investigators will conduct a mathematical and computational investigation of nonlocal models that arise in dynamic fracture in plates, image processing, and phase transitions. They will create neural networks models with continuous depth, which involve nonlocality, by considering a cumulative effect of layers in the hidden states. To provide a theoretical and methodological foundation for the study of nonlocal models within the realm of applied mathematics, the researchers will adapt existing techniques from the local theory to the nonlocal framework, as well as develop new methods. Applied mathematicians from academia and research laboratories will provide expertise in modeling and computational aspects.This project is jointly funded by the DMS Applied Mathematics Program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非局部系统已被用于预测动态断裂中的裂纹和损伤,对图像进行降噪,并在二元流体和相分离中提供更精确的模型。该项目涉及用于模拟此类应用中遇到的不连续、单一或不规则行为的理论。目前,它们被应用于研究抗损伤盖板玻璃,如用于手机、复合材料飞机、风力涡轮机叶片、石油和天然气开采的玻璃,以及核能工业中,如在极端情况下混凝土的破裂和乏核燃料的储存。该项目还旨在开发数学工具,以促进对非局部模型的理解,其目标是回答诸如特定力会在材料中引起多大的损伤,在给定的生长、衰减和扩散规则下种群的构成是什么,以及如何提高神经网络性能的效率和功效等问题。该项目为研究生和本科生提供了研究训练的机会。研究人员将对在板的动态断裂、图像处理和相变中出现的非局部模型进行数学和计算研究。他们将创建具有连续深度的神经网络模型,该模型涉及非局域性,通过考虑隐藏状态中的层的累积效应。为了为应用数学领域的非局部模型研究提供理论和方法基础,研究人员将把现有的局部理论技术应用于非局部框架,并开发新的方法。来自学术界和研究实验室的应用数学家将提供建模和计算方面的专业知识。该项目由DMS应用数学项目和促进竞争性研究的既定项目(EPSCoR)共同资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sensitivity Analysis for Solutions to Heterogeneous Nonlocal Systems. Theoretical and Numerical Studies
异构非局部系统解决方案的敏感性分析。理论和数值研究
  • DOI:
    10.1007/s42102-022-00081-6
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Buczkowski, Nicole E.;Foss, Mikil D.;Parks, Michael L.;Radu, Petronela
  • 通讯作者:
    Radu, Petronela
A new nonlocal calculus framework. Helmholtz decompositions, properties, and convergence for nonlocal operators in the limit of the vanishing horizon
一个新的非局部微积分框架。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Petronela Radu其他文献

Nonlocal Green Theorems and Helmholtz Decompositions for Truncated Fractional Gradients
  • DOI:
    10.1007/s00245-024-10160-3
  • 发表时间:
    2024-07-04
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    José Carlos Bellido;Javier Cueto;Mikil D. Foss;Petronela Radu
  • 通讯作者:
    Petronela Radu
On nonlocal problems with Neumann boundary conditions: scaling and convergence for nonlocal operators and solutions

Petronela Radu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Petronela Radu', 18)}}的其他基金

Higher Order Nonlocal Models in Continuum Mechanics
连续介质力学中的高阶非局部模型
  • 批准号:
    1716790
  • 财政年份:
    2017
  • 资助金额:
    $ 34.31万
  • 项目类别:
    Standard Grant
Conference on Recent Developments in Continuum Mechanics and Partial Differential Equations
连续介质力学和偏微分方程最新发展会议
  • 批准号:
    1500939
  • 财政年份:
    2015
  • 资助金额:
    $ 34.31万
  • 项目类别:
    Standard Grant
Math in the City
城市中的数学
  • 批准号:
    0941132
  • 财政年份:
    2010
  • 资助金额:
    $ 34.31万
  • 项目类别:
    Standard Grant
Wave Propagation in Nonlinear Acoustics, Viscoelasticity, and Heat Transfer
非线性声学、粘弹性和传热中的波传播
  • 批准号:
    0908435
  • 财政年份:
    2009
  • 资助金额:
    $ 34.31万
  • 项目类别:
    Standard Grant

相似海外基金

Viscoelastic Cytoskeletal-Membrane Mechanics: Hybrid Discrete-Continuum Stochastic Approaches
粘弹性细胞骨架膜力学:混合离散连续随机方法
  • 批准号:
    2306345
  • 财政年份:
    2023
  • 资助金额:
    $ 34.31万
  • 项目类别:
    Standard Grant
BRITE Pivot: An Integrated Theory of Continuum and Statistical Mechanics of Active Soft Matter
BRITE Pivot:活性软物质连续体和统计力学的综合理论
  • 批准号:
    2227556
  • 财政年份:
    2023
  • 资助金额:
    $ 34.31万
  • 项目类别:
    Standard Grant
Firedrake: high performance, high productivity simulation for the continuum mechanics community.
Firedrake:连续介质力学界的高性能、高生产力模拟。
  • 批准号:
    EP/W029731/1
  • 财政年份:
    2022
  • 资助金额:
    $ 34.31万
  • 项目类别:
    Research Grant
Mechanics of surfaces: Continuum-based modeling and analysis for biomembranes and 2D fiber materials
表面力学:生物膜和二维纤维材料的连续体建模和分析
  • 批准号:
    RGPIN-2015-04742
  • 财政年份:
    2021
  • 资助金额:
    $ 34.31万
  • 项目类别:
    Discovery Grants Program - Individual
Gen X: ExCALIBUR working group on Exascale continuum mechanics through code generation.
Gen X:ExCALIBUR 工作组通过代码生成研究百亿亿次连续介质力学。
  • 批准号:
    EP/V001493/1
  • 财政年份:
    2020
  • 资助金额:
    $ 34.31万
  • 项目类别:
    Research Grant
Mechanics of surfaces: Continuum-based modeling and analysis for biomembranes and 2D fiber materials
表面力学:生物膜和二维纤维材料的连续体建模和分析
  • 批准号:
    RGPIN-2015-04742
  • 财政年份:
    2020
  • 资助金额:
    $ 34.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanics of surfaces: Continuum-based modeling and analysis for biomembranes and 2D fiber materials
表面力学:生物膜和二维纤维材料的连续体建模和分析
  • 批准号:
    RGPIN-2015-04742
  • 财政年份:
    2019
  • 资助金额:
    $ 34.31万
  • 项目类别:
    Discovery Grants Program - Individual
Complex and Singular Behavior in Continuum Mechanics Models
连续力学模型中的复杂和奇异行为
  • 批准号:
    1909103
  • 财政年份:
    2019
  • 资助金额:
    $ 34.31万
  • 项目类别:
    Standard Grant
Scaling Laws and Optimal Design in Some Problems of Continuum Mechanics
连续介质力学若干问题的标度律与优化设计
  • 批准号:
    2025000
  • 财政年份:
    2019
  • 资助金额:
    $ 34.31万
  • 项目类别:
    Continuing Grant
EAGER: An Atomistic-Continuum Formulation for the Mechanics of Monolayer Transition Metal Dichalcogenides
EAGER:单层过渡金属二硫属化物力学的原子连续公式
  • 批准号:
    1937983
  • 财政年份:
    2019
  • 资助金额:
    $ 34.31万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了