Mathematics of Revealing Inaccessible Objects Using Linear and Nonlinear Waves
使用线性和非线性波揭示难以接近的物体的数学
基本信息
- 批准号:2109199
- 负责人:
- 金额:$ 25.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project is concerned with the mathematical theory of inverse problems. Inverse problems arise in numerous medical and seismic imaging applications as well as in exploration geophysics and non-destructive evaluation, where one is interested in producing images of an inaccessible interior of a medium from measurements performed in the exterior. Typically, in order to reveal the internal structure, one measures the response of the medium when probed with different kinds of waves, ranging from electromagnetic waves to X-rays. Recently, it has been observed that nonlinear seismic responses may give additional information concerning the interior structure of the Earth. Similarly, nonlinear ultrasound techniques in medical imaging may provide better images since the contrast in nonlinear media parameters is usually larger than that in the linear parameters. The project strives to develop significantly prominent mathematical methods where the nonlinear interaction of waves is used to bear on challenging inverse problems coming from applications. These novel mathematical techniques may lead to significant advances, in particular in medical and seismic imaging. One of the specific focuses of the project is the Electrical Impedance Tomography problem for nonlinear anisotropic media, an imaging modality with applications in biomedical imaging and non-destructive testing of mechanical parts. An integral part of the project is concerned with the educational training of graduate students.The project consists of four research topics. The first topic deals with partial data inverse problems for nonlinear elliptic partial differential equations (PDE), where nonlinear parameters of an unknown medium are to be determined from measurements performed along a small portion of the boundary. Despite the great significance of such inverse problems and their ubiquity in applications, they are among some of the most fundamental open questions in the field. The goal here is to solve such problems for important nonlinear PDE, including the quasilinear anisotropic conductivity equation, building upon the recent advances by the investigator and collaborators, and to work towards the solution of these open problems in the linear setting. The second topic is devoted to the geometric version of the anisotropic Calderon problem, where one seeks to determine potential in the Schrodinger equation on a compact Riemannian manifold from boundary measurements. By introducing a nonlinearity, the goal is to solve the anisotropic Calderon problem for the nonlinear Schrodinger equation in geometric settings for which the corresponding inverse problem in the linear case is still open. The third topic deals with inverse problems for the fundamental systems in physics and geometry, such as the anisotropic Maxwell and Yang-Mill’s systems. The fourth topic is concerned with inverse problems for nonlinear hyperbolic PDE on manifolds with boundary, aiming to exploit the nonlinearity as a tool to solve some of them in cases when the linear counterpart is open.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及反问题的数学理论。逆问题出现在许多医学和地震成像应用以及勘探地球物理学和无损评估中,人们感兴趣的是通过在外部进行的测量来生成难以接近的介质内部的图像。通常,为了揭示内部结构,人们会测量介质在用不同种类的波(从电磁波到 X 射线)探测时的响应。最近,人们观察到非线性地震响应可能提供有关地球内部结构的附加信息。类似地,医学成像中的非线性超声技术可以提供更好的图像,因为非线性介质参数的对比度通常大于线性参数的对比度。该项目致力于开发显着突出的数学方法,其中波的非线性相互作用用于解决来自应用的具有挑战性的反问题。这些新颖的数学技术可能会带来重大进步,特别是在医学和地震成像方面。该项目的具体重点之一是非线性各向异性介质的电阻抗断层扫描问题,这是一种应用于生物医学成像和机械零件无损检测的成像模式。该项目的一个组成部分是研究生的教育培训。该项目由四个研究课题组成。第一个主题涉及非线性椭圆偏微分方程 (PDE) 的部分数据反问题,其中未知介质的非线性参数将通过沿一小部分边界进行的测量来确定。尽管此类反问题具有重要意义且在应用中普遍存在,但它们是该领域一些最基本的开放问题之一。这里的目标是基于研究者和合作者的最新进展,解决重要的非线性偏微分方程(包括拟线性各向异性电导率方程)的此类问题,并致力于在线性设置中解决这些开放问题。第二个主题致力于各向异性卡尔德隆问题的几何版本,其中寻求从边界测量确定紧致黎曼流形上的薛定谔方程中的势。通过引入非线性,目标是在几何设置中求解非线性薛定谔方程的各向异性卡尔德隆问题,而线性情况下的相应反演问题仍然是开放的。第三个主题涉及物理和几何中基本系统的反演问题,例如各向异性麦克斯韦系统和杨米尔系统。第四个主题涉及有边界流形上的非线性双曲偏微分方程的反问题,旨在利用非线性作为工具来解决线性对应项开放的情况下的一些问题。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Partial data inverse problems for quasilinear conductivity equations
- DOI:10.1007/s00208-022-02367-y
- 发表时间:2020-10
- 期刊:
- 影响因子:1.4
- 作者:Yavar Kian;Katya Krupchyk;G. Uhlmann
- 通讯作者:Yavar Kian;Katya Krupchyk;G. Uhlmann
Reconstructing a potential perturbation of the biharmonic operator on transversally anisotropic manifolds
重建横向各向异性流形上双调和算子的潜在扰动
- DOI:10.3934/ipi.2022034
- 发表时间:2023
- 期刊:
- 影响因子:1.3
- 作者:Yan, Lili
- 通讯作者:Yan, Lili
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katya Krupchyk其他文献
From semiclassical Strichartz estimates to uniform $L^p$ resolvent estimates on compact manifolds
从半经典 Strichartz 估计到紧流形上的统一 $L^p$ 解析估计
- DOI:
10.1093/imrn/rnx042 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
N. Burq;D. D. S. Ferreira;Katya Krupchyk - 通讯作者:
Katya Krupchyk
Inverse problems for advection diffusion equations in admissible geometries
允许几何形状中平流扩散方程的反问题
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Katya Krupchyk;G. Uhlmann - 通讯作者:
G. Uhlmann
Bounds on eigenfunctions of semiclassical operators with double characteristics
具有双重特征的半经典算子本征函数的界
- DOI:
10.3233/asy-171442 - 发表时间:
2015 - 期刊:
- 影响因子:1.4
- 作者:
Katya Krupchyk;G. Uhlmann - 通讯作者:
G. Uhlmann
Inverse Problems for Magnetic Schrödinger Operators in Transversally Anisotropic Geometries
横向各向异性几何中磁薛定谔算子的反演问题
- DOI:
10.1007/s00220-018-3182-0 - 发表时间:
2017 - 期刊:
- 影响因子:2.4
- 作者:
Katya Krupchyk;G. Uhlmann - 通讯作者:
G. Uhlmann
A P ] 2 2 Se p 20 20 RECONSTRUCTION IN THE CALDERÓN PROBLEM ON CONFORMALLY TRANSVERSALLY ANISOTROPIC MANIFOLDS
A P ] 2 2 Sep 20 20 共形横向各向异性流形的 Calderón 问题的重构
- DOI:
10.1090/proc/16455 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
A. Feizmohammadi;Katya Krupchyk;L. Oksanen;G. Uhlmann - 通讯作者:
G. Uhlmann
Katya Krupchyk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katya Krupchyk', 18)}}的其他基金
Analytic and Geometric Inverse Problems and Related Topics
解析和几何反问题及相关主题
- 批准号:
1815922 - 财政年份:2018
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Inverse Problems and Spectral Theory for Elliptic Operators
椭圆算子的反问题和谱理论
- 批准号:
1500703 - 财政年份:2015
- 资助金额:
$ 25.35万 - 项目类别:
Continuing Grant
相似海外基金
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Revealing the drivers of galaxy formation in the densest cosmic environments
揭示最密集的宇宙环境中星系形成的驱动因素
- 批准号:
MR/X035166/1 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Fellowship
Revealing the regulatory mechanisms of endosomal cargo transporters
揭示内体货物转运蛋白的调控机制
- 批准号:
2337495 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
- 批准号:
2320259 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Revealing complexity of hyaluronan-protein interactions: novel tools and insights
揭示透明质酸-蛋白质相互作用的复杂性:新颖的工具和见解
- 批准号:
BB/X007278/1 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Research Grant
REVEALing Signatures of Habitable Worlds Hidden by Stellar Activity
揭示恒星活动隐藏的宜居世界的特征
- 批准号:
EP/Z000181/1 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Research Grant
From Theory to Thrust: Revealing the Role of Actuation and Sensing in How Undulatory Swimmers Change Speed
从理论到推力:揭示驱动和传感在波动游泳者如何改变速度中的作用
- 批准号:
2345913 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
- 批准号:
2320260 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Revealing the Nature of Dark Matter with JWST and Euclid
通过 JWST 和欧几里得揭示暗物质的本质
- 批准号:
ST/X003086/1 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Fellowship
Revealing the Influence of Electrolyte Solvents and Ions on Electronic and Ionic Transport in Electrochemically Doped Conjugated Polymers
揭示电解质溶剂和离子对电化学掺杂共轭聚合物中电子和离子传输的影响
- 批准号:
2349830 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant