Simulating Spins with an Array of Single Molecules
用单分子阵列模拟自旋
基本信息
- 批准号:2110225
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
General audience abstract:Quantum mechanics is at the heart of countless scientific problems, from the detailed behavior of molecules to superconductivity to microelectronics to lasers. The simplest quantum mechanical behavior has already been used to build the precise atomic clocks at the heart of our Global Positioning System, which underlies the smartphone maps that most Americans use for navigation. The current project funds a study of more complex quantum behavior, where many quantum systems interact in a precisely controlled manner. As moderately-sized interacting quantum systems are beyond the prediction power of even the world’s fastest supercomputers, such “quantum simulators” are thought to offer new insights that may advance chemistry, physics, medicine, and energy technology. The systems developed here, based on individually controlled interacting molecules, will also strengthen American leadership in the world-wide pursuit of quantum technologies and train and prepare students for the quantum technology workforce.Technical audience abstract:Quantum simulation, where phase diagrams and dynamics of many-body quantum systems can be simulated directly by precisely controlled laboratory analogues, has generated much interest in the Atomic, Molecular and Optical Physics (AMO) community. Platforms for quantum simulation abound and have already seen success in studying quantum magnetism, many-body localization, the Fermi-Hubbard model, and topological phases. Fully controlled systems of ultracold molecules, with their rich internal structure and long-range electric dipole interactions, have been proposed as candidates to add to these platforms in simulating the dynamics of spin systems, among many others. This project aims to create a quantum simulator of spin dynamics consisting of a configurable array of ultracold dipolar molecules, assembled atom by atom and held in individual optical tweezers. The work involves expanding full quantum state control of a single molecule to an array of molecules and tuning their inter-particle interactions by electric field and microwave control. Furthermore, a combination of optical tweezers and lattices to simultaneously reduce photon scattering while allowing uniform trapping potentials, high trapping frequencies, flexible geometries, and a fast repetition rate will be pursued.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子力学是无数科学问题的核心,从分子的详细行为到超导性,再到微电子学和激光。 最简单的量子力学行为已经被用于构建全球定位系统核心的精确原子钟,该系统是大多数美国人用于导航的智能手机地图的基础。 目前的项目资助了一项更复杂的量子行为研究,其中许多量子系统以精确控制的方式相互作用。 由于中等大小的相互作用量子系统甚至超出了世界上最快的超级计算机的预测能力,这种“量子模拟器”被认为提供了可能推进化学,物理,医学和能源技术的新见解。 在这里开发的系统,基于单独控制的相互作用的分子,也将加强美国在全球范围内追求量子技术的领导地位,并培养和准备学生的量子技术劳动力。技术观众摘要:量子模拟,其中相图和多体量子系统的动力学可以直接模拟精确控制的实验室模拟,已经产生了很大的兴趣,在原子,分子和光学物理(AMO)社区。量子模拟的平台比比皆是,并且已经在研究量子磁学、多体局域化、费米-哈伯德模型和拓扑相位方面取得了成功。超冷分子的完全受控系统,具有丰富的内部结构和长程电偶极相互作用,已被提议作为候选者添加到这些平台中,以模拟自旋系统的动力学等。该项目旨在创建一个自旋动力学的量子模拟器,由一个可配置的超冷偶极分子阵列组成,一个原子一个原子地组装,并保持在单独的光镊中。这项工作涉及将单个分子的全量子态控制扩展到分子阵列,并通过电场和微波控制来调节它们的粒子间相互作用。此外,还将寻求光镊和晶格的组合,以同时减少光子散射,同时实现均匀的捕获势、高捕获频率、灵活的几何形状和快速的重复率。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Extended rotational coherence of polar molecules in an elliptically polarized trap
椭圆偏振陷阱中极性分子的扩展旋转相干性
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Park, Annie J.;Picard, Lewis;Patenotte, Gabriel;Zhang, Jesse. T.;Rosenband;Till, Ni
- 通讯作者:Till, Ni
An optical tweezer array of ground-state polar molecules
基态极性分子的光镊阵列
- DOI:10.1088/2058-9565/ac676c
- 发表时间:2022
- 期刊:
- 影响因子:6.7
- 作者:Zhang, Jessie T;Picard, Lewis R;Cairncross, William B;Wang, Kenneth;Yu, Yichao;Fang, Fang;Ni, Kang-Kuen
- 通讯作者:Ni, Kang-Kuen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kang-Kuen Ni其他文献
Quantum science with optical tweezer arrays of ultracold atoms and molecules
超冷原子和分子的光镊阵列量子科学
- DOI:
10.1038/s41567-021-01357-2 - 发表时间:
2021-11-11 - 期刊:
- 影响因子:18.400
- 作者:
Adam M. Kaufman;Kang-Kuen Ni - 通讯作者:
Kang-Kuen Ni
Hyperfine-to-rotational energy transfer in ultracold atom–molecule collisions of Rb and KRb
铷(Rb)和钾铷(KRb)超冷原子-分子碰撞中的超精细-转动能量转移
- DOI:
10.1038/s41557-025-01778-z - 发表时间:
2025-04-07 - 期刊:
- 影响因子:20.200
- 作者:
Yi-Xiang Liu;Lingbang Zhu;Jeshurun Luke;Mark C. Babin;Marcin Gronowski;Hela Ladjimi;Michał Tomza;John L. Bohn;Timur V. Tscherbul;Kang-Kuen Ni - 通讯作者:
Kang-Kuen Ni
Entanglement and iSWAP gate between molecular qubits
分子量子比特之间的纠缠和 iSWAP 门
- DOI:
10.1038/s41586-024-08177-3 - 发表时间:
2024-11-13 - 期刊:
- 影响因子:48.500
- 作者:
Lewis R. B. Picard;Annie J. Park;Gabriel E. Patenotte;Samuel Gebretsadkan;David Wellnitz;Ana Maria Rey;Kang-Kuen Ni - 通讯作者:
Kang-Kuen Ni
Kang-Kuen Ni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kang-Kuen Ni', 18)}}的其他基金
EAGER: Coherent Manipulation and Quantum Entanglement in Ultracold Reactions
EAGER:超冷反应中的相干操纵和量子纠缠
- 批准号:
2332539 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Synthesizing and Harnessing Ultracold Single Molecules for Quantum Simulations
合成和利用超冷单分子进行量子模拟
- 批准号:
1806595 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
多孔超分子离子骨架材料(SPINs):新型有机多孔材料的实用制备及温室气体吸附研究
- 批准号:21772013
- 批准年份:2017
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Realization of high-fidelity quantum logic gates using electron spins on superfluid helium
利用超流氦上的电子自旋实现高保真量子逻辑门
- 批准号:
23K26488 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of element-specific ultrafast magnetic imaging for controlling spins by laser
开发用于通过激光控制自旋的元素特异性超快磁成像
- 批准号:
23H01108 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Synthetic biology Pipeline for the Investigation of Novel Spidroins (SPINS)
新型蜘蛛蛋白研究的合成生物学管道 (SPINS)
- 批准号:
EP/X015416/1 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Realization of high-fidelity quantum logic gates using electron spins on superfluid helium
利用超流氦上的电子自旋实现高保真量子逻辑门
- 批准号:
23H01795 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Synthetic biology Pipeline for the Investigation of Novel Spidroins (SPINS)
新型蜘蛛蛋白研究的合成生物学管道 (SPINS)
- 批准号:
EP/X015408/1 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Manipulation of single spins in ferroelectric oxides from first principles
从第一原理操控铁电氧化物中的单自旋
- 批准号:
2223486 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
collinear laser quantum control of nuclear spins
核自旋的共线激光量子控制
- 批准号:
RGPIN-2021-02993 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Silicon Photonics Inertial Navigation Systems (SPINS)
硅光子惯性导航系统 (SPINS)
- 批准号:
2734697 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Studentship
Quantum interface engineering with solid-state spins and photons
固态自旋和光子的量子界面工程
- 批准号:
2742534 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Studentship
Synthetic spins in microwave cavities
微波腔中的合成自旋
- 批准号:
580913-2022 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Alliance Grants