Coherent Control of Cold Collision by Preparing Molecular Eigenstates Using Stark-Induced Adiabatic Passage

利用斯塔克诱导绝热通道制备分子本征态来相干控制冷碰撞

基本信息

  • 批准号:
    2110256
  • 负责人:
  • 金额:
    $ 46.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

General audience abstract:This project focuses on developing a comprehensive understanding of the quantum mechanical processes that drive molecular interactions including chemical reactions at the most fundamental level. The main goal of this research is to explore the character of quantum systems and improve our ability to manipulate them, which is of great importance in various applications including realization of a quantum computer. The research team will carry out low energy (cold) collision experiments with molecules prepared in well-defined quantum states. By correlating the quantum states of the incoming particles with those of the outgoing particles they will explore the quantum mechanical interactions involved in making and breaking chemical bonds. This research combines cutting edge quantum optical techniques and expertise in laser spectroscopy with state-resolved collision dynamics using a supersonically expanded molecular beam. The graduate students involved in this project will learn the technical skills needed for multiphoton laser spectroscopy using vacuum ultraviolet laser pulses, quantum state preparation using sophisticated single-mode pulsed laser systems, and manipulation of a supersonic beam. Additionally, the research team will design a high resolution mass spectrometer to resolve the scattering angular distribution in cold collisions. This comprehensive training in broad areas of quantum physics and chemistry will help to prepare the students to be leaders in improving the science and technology of tomorrow. Technical audience abstract:To understand the quantum mechanical processes involved in chemical reactions, it is essential to find a direct correspondence between experimental measurements and theoretical calculations. To achieve this goal, experimentalists need to select theoretically tractable molecules like H2 (N2, CO, etc.), which are also of relevance to current science. The researchers will prepare diatomic molecules in high vibrational states using a coherent optical technique called multi-step Stark-induced adiabatic Raman passage (multi-step SARP). Multi-step SARP is a generalization of the SARP process developed earlier by this research group, which can pump a large ensemble of H2 molecules to a variety of vibrationally excited levels. Multi-step SARP will combine two or more SARP processes to achieve near complete population transfer to a very highly vibrationally excited level. The researchers have shown theoretically that by combining several Stokes pulses on the wing of a stronger pump pulse it is possible to reach very high vibrational states. Long term prospects for this technique include preparing the highest vibrational level of H2 and even reaching the vibrational dissociation continuum, generating a pair of entangled loosely bound H atoms. These exotic quantum systems will allow the researchers to overcome the reaction barrier in cold and ultracold collisions and test fundamental quantum physics principles, such as interference in collision. The first goal of the project is to set up the multi-step SARP experiment and demonstrate the preparation of very high vibrationally excited levels of H2. Selection of the laser polarization used in the multi-step SARP will permit control of the alignment of the bond axis of the highly vibrationally excited molecules. Excitation of very high vibrational states using a two-step SARP process will be a major leap forward in the study of cold molecular collisions. Once prepared the researchers will carry out cold scattering experiments on the four-center reaction H2 + D2 →2HD in a supersonically expanded mixed beam of H2 and D2. The collision dynamics of highly vibrationally excited H2 molecules are of immense interest for understanding and modelling the physics and chemistry of the interstellar medium. Additionally, high-lying vibrational levels of H2 are considered essential to the efficient generation of H- beams by dissociative attachment of low energy electrons, which has important applications in igniting a fusion reactor.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
一般观众摘要:该项目的重点是发展的量子力学过程,驱动分子相互作用,包括在最基本的水平上的化学反应的全面理解。本研究的主要目标是探索量子系统的特性,提高我们操纵它们的能力,这在包括实现量子计算机在内的各种应用中具有重要意义。该研究小组将对在明确定义的量子态中制备的分子进行低能(冷)碰撞实验。通过将入射粒子的量子态与出射粒子的量子态相关联,他们将探索建立和破坏化学键所涉及的量子力学相互作用。这项研究结合了尖端的量子光学技术和激光光谱学的专业知识,使用超音速扩展分子束进行状态分辨碰撞动力学。参与该项目的研究生将学习使用真空紫外激光脉冲进行多光子激光光谱学所需的技术技能,使用复杂的单模脉冲激光系统进行量子态制备,以及操纵超声光束。此外,研究小组将设计一个高分辨率质谱仪,以解决冷碰撞中的散射角分布。在量子物理和化学的广泛领域的全面培训将有助于培养学生成为提高未来科学和技术的领导者。技术观众摘要:为了理解化学反应中涉及的量子力学过程,必须找到实验测量和理论计算之间的直接对应关系。为了实现这一目标,实验者需要选择理论上易于处理的分子,如H2(N2,CO等),这也与当前的科学有关。研究人员将使用称为多步斯塔克诱导绝热拉曼通道(多步SARP)的相干光学技术制备高振动态的双原子分子。多步SARP是该研究小组早期开发的SARP过程的概括,它可以将大量H2分子泵送到各种振动激发能级。多步SARP将联合收割机结合两个或多个SARP过程,以实现接近完全的布居转移到非常高的振动激发水平。研究人员已经从理论上证明,通过在更强的泵浦脉冲的机翼上组合几个斯托克斯脉冲,可以达到非常高的振动状态。该技术的长期前景包括制备H2的最高振动能级,甚至达到振动解离连续谱,产生一对纠缠的松散结合的H原子。这些奇异的量子系统将使研究人员能够克服冷和超冷碰撞中的反应障碍,并测试基本的量子物理学原理,例如碰撞中的干涉。该项目的第一个目标是建立多步SARP实验,并演示非常高的振动激发水平的H2的制备。在多步SARP中使用的激光偏振的选择将允许控制高度振动激发的分子的键轴的对准。利用两步SARP过程激发极高振动态将是冷分子碰撞研究的一个重大飞跃。一旦准备就绪,研究人员将在H2和D2的超音速扩展混合束中对四中心反应H2 + D2 → 2 HD进行冷散射实验。高度振动激发的H2分子的碰撞动力学对于理解和模拟星际介质的物理和化学具有巨大的意义。此外,H2的高振动能级被认为是通过低能电子的解离附着有效产生H-束的关键,这在点燃聚变反应堆中具有重要的应用。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum-Controlled Collisions of H2 Molecules.
H2 分子的量子控制碰撞。
Quantum mechanical double slit for molecular scattering
  • DOI:
    10.1126/science.abl4143
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Haowen Zhou;William E. Perreault;N. Mukherjee;R. Zare
  • 通讯作者:
    Haowen Zhou;William E. Perreault;N. Mukherjee;R. Zare
Resonant cold scattering of highly vibrationally excited D2 with Ne
高振动激发 D2 与 Ne 的共振冷散射
  • DOI:
    10.1063/5.0114349
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Perreault, William E.;Zhou, Haowen;Mukherjee, Nandini;Zare, Richard N.
  • 通讯作者:
    Zare, Richard N.
Anisotropic dynamics of resonant scattering between a pair of cold aligned diatoms
一对冷排列硅藻之间共振散射的各向异性动力学
  • DOI:
    10.1038/s41557-022-00926-z
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    21.8
  • 作者:
    Zhou, Haowen;Perreault, William E.;Mukherjee, Nandini;Zare, Richard N.
  • 通讯作者:
    Zare, Richard N.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Zare其他文献

Challenges of metagenomics and single-cell genomics approaches for exploring cyanobacterial diversity
  • DOI:
    10.1007/s11120-014-0066-9
  • 发表时间:
    2014-12-17
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Michelle Davison;Eric Hall;Richard Zare;Devaki Bhaya
  • 通讯作者:
    Devaki Bhaya
Unusual Properties of Water at Heterogeneous Biological Interfaces
  • DOI:
    10.1016/j.bpj.2019.11.2642
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Jae Kyoo Lee;Hong Gil Nam;Richard Zare
  • 通讯作者:
    Richard Zare

Richard Zare的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Zare', 18)}}的其他基金

Collaborative Research: EAGER: Mapping small molecules in the root meristem
合作研究:EAGER:绘制根分生组织中的小分子
  • 批准号:
    2028776
  • 财政年份:
    2020
  • 资助金额:
    $ 46.36万
  • 项目类别:
    Standard Grant
RoL: EAGER: DESYN-C Spontaneously Synthesized RNA Protocells for Biological Catalysis
RoL:EAGER:DESYN-C 自发合成的 RNA 原始细胞用于生物催化
  • 批准号:
    1844119
  • 财政年份:
    2019
  • 资助金额:
    $ 46.36万
  • 项目类别:
    Standard Grant
D3SC and EAGER: Using Deep Learning to Find Algorithms for Optimizing Chemical Reactions
D3SC 和 EAGER:利用深度学习寻找优化化学反应的算法
  • 批准号:
    1734082
  • 财政年份:
    2017
  • 资助金额:
    $ 46.36万
  • 项目类别:
    Standard Grant
Fundamental Studies of the Hydrogen-Atom Hydrogen-Molecule Exchange Reaction
氢原子氢分子交换反应的基础研究
  • 批准号:
    1464640
  • 财政年份:
    2015
  • 资助金额:
    $ 46.36万
  • 项目类别:
    Continuing Grant
Role of Collision Geometry in Reactivity
碰撞几何在反应性中的作用
  • 批准号:
    1151428
  • 财政年份:
    2012
  • 资助金额:
    $ 46.36万
  • 项目类别:
    Continuing Grant
International Collaboration in Chemistry: Quantum Dynamics of 4-Atom Bimolecular Reactions
国际化学合作:4 原子双分子反应的量子动力学
  • 批准号:
    1025960
  • 财政年份:
    2010
  • 资助金额:
    $ 46.36万
  • 项目类别:
    Continuing Grant
Individual Nomination
个人提名
  • 批准号:
    0828816
  • 财政年份:
    2009
  • 资助金额:
    $ 46.36万
  • 项目类别:
    Standard Grant
Preparation of Nanoparticles from Microemulsions Using Supercritical Antisolvent Precipitation
使用超临界抗溶剂沉淀从微乳液中制备纳米颗粒
  • 批准号:
    0827806
  • 财政年份:
    2008
  • 资助金额:
    $ 46.36万
  • 项目类别:
    Standard Grant
Microfluidics-Based Single-Cell Chemical Analysis of Cyanobacteria
基于微流体的蓝藻单细胞化学分析
  • 批准号:
    0749638
  • 财政年份:
    2008
  • 资助金额:
    $ 46.36万
  • 项目类别:
    Continuing Grant
State-to-State Reaction Dynamics
国与国之间的反应动态
  • 批准号:
    0650414
  • 财政年份:
    2007
  • 资助金额:
    $ 46.36万
  • 项目类别:
    Continuing Grant

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

Development of ultra-high-resolution detection and control technique of the cold atoms in optical lattice using a trapped ion
利用捕获离子开发光学晶格中冷原子的超高分辨率探测和控制技术
  • 批准号:
    23K13046
  • 财政年份:
    2023
  • 资助金额:
    $ 46.36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Battery Management System and Active Thermal Control of Aircraft Batteries for Aerospace Applications in Cold Temperature
低温下航空航天应用的电池管理系统和飞机电池主动热控制
  • 批准号:
    560762-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 46.36万
  • 项目类别:
    Alliance Grants
Intelligent Control of Connected and Automated Vehicles and Powertrains for Cold Climates
适用于寒冷气候的互联自动化车辆和动力系统的智能控制
  • 批准号:
    RGPIN-2020-04403
  • 财政年份:
    2022
  • 资助金额:
    $ 46.36万
  • 项目类别:
    Discovery Grants Program - Individual
Occupant-centric control algorithms for mixed-mode buildings in cold climates
寒冷气候下混合模式建筑的以居住者为中心的控制算法
  • 批准号:
    578499-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 46.36万
  • 项目类别:
    Alliance Grants
Collaborative Research: Distributed Predictive Control of Cold Atmospheric Microplasma Jet Arrays for Materials Processing
合作研究:用于材料加工的冷大气微等离子体射流阵列的分布式预测控制
  • 批准号:
    2302219
  • 财政年份:
    2022
  • 资助金额:
    $ 46.36万
  • 项目类别:
    Standard Grant
Intelligent Control of Clean Combustion Low-Carbon GDI Engine: Oxygen Sensor, Fuel Injection, and Engine Cold-start
清洁燃烧低碳GDI发动机智能控制:氧传感器、燃油喷射、发动机冷启动
  • 批准号:
    570841-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 46.36万
  • 项目类别:
    Alliance Grants
Establishment of cartilage regeneration therapy for temporomandibular joint using cold laser technology to control matrix metabolic activity
冷激光技术控制基质代谢活性建立颞下颌关节软骨再生疗法
  • 批准号:
    21K21041
  • 财政年份:
    2021
  • 资助金额:
    $ 46.36万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Battery Management System and Active Thermal Control of Aircraft Batteries for Aerospace Applications in Cold Temperature
低温下航空航天应用的电池管理系统和飞机电池主动热控制
  • 批准号:
    560762-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 46.36万
  • 项目类别:
    Alliance Grants
Localization of RNA binding proteins in the control of common cold.
RNA 结合蛋白在普通感冒控制中的定位。
  • 批准号:
    564127-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 46.36万
  • 项目类别:
    University Undergraduate Student Research Awards
Intelligent Control of Connected and Automated Vehicles and Powertrains for Cold Climates
适用于寒冷气候的互联自动化车辆和动力系统的智能控制
  • 批准号:
    RGPIN-2020-04403
  • 财政年份:
    2021
  • 资助金额:
    $ 46.36万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了