Improving the Experimental Characterization of Dipole Matrix Elements in Rubidium

改进铷中偶极子基体元素的实验表征

基本信息

  • 批准号:
    2110471
  • 负责人:
  • 金额:
    $ 56.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

An atom consists of electrons bound to a nucleus. This is sometimes depicted with the electrons orbiting the nucleus like planets orbit the sun, but in reality motion at the atomic scale is governed by the laws of quantum mechanics. These say that even though the electron is a point-like particle, it is impossible to say exactly where an electron is at any given time. Instead, the location of an electron is spread out around the nucleus in a probabilistic way. In order to understand an atom’s properties, it is necessary to know the nature of this distribution. Unfortunately, the distribution is hard to observe directly with high precision. Typically, the best approach is to measure properties of the atom that depend on the electrons and use these values to constrain the distribution. One useful set of properties are the dipole matrix elements, which help describe how the electrons move when the atom is placed in an electric field. Even the dipole matrix elements cannot be measured directly, but they can be reliably inferred from several types of experiments. A particularly precise method is called tune-out wavelength spectroscopy. In this project, tune-out measurements will be used to obtain improved values for several matrix elements of the rubidium atom. To give one example of why these measurements are important, consider the question of whether an atom has “handedness,” like a right-handed or left-handed glove. Theories and measurements in nuclear physics indicate that the atomic nucleus does have a handedness. The role of this handedness in nuclear physics is very important for understanding how matter was created in the early universe, and why the universe looks the way it does now. It can be studied in large particle accelerators, but doing so is difficult and expensive. In an atom, a slight amount of the handedness is transmitted from the nucleus to the electrons. Although the effect is small, the atomic handedness can be measured very precisely and this has been useful for improving nuclear physics theories. However, relating the atomic measurement to nuclear physics requires accurate dipole matrix elements. The improved values that will be provided by this project will be useful for this purpose, and in this way help improve our understanding of why the universe is as it is. In addition to these scientific results, the project will provide an important training opportunity for both undergraduate and graduate students in physics. The techniques used in this project are applicable to other important research areas such as quantum computing and quantum communication, as well as to nationally important technologies such as lasers and quantum sensing. Participants in this project will be well prepared to contribute in these areas.In tune-out wavelength spectroscopy, the atom is illuminated by a laser beam that is tuned far from any atomic resonances. In most cases, this causes the energy of the atom to change. The energy can either increase or decrease, depending on the wavelength of the light. At specific wavelengths, however, the energy change is exactly zero. The value of these wavelengths depends on the dipole matrix elements of the atom, and by measuring the wavelength accurately the ratios of various matrix elements can be determined with high precision. The method used in this project to determine the tune-out wavelength is atom interferometry. Here the overall wave function of the atom is split into two branches that separate in space. One branch passes through the laser, and any resulting energy change results in a phase shift of the wave function. When the two branches are later recombined, this phase shift can be detected. The tune-out wavelength is determined by adjusting the laser to make the phase shift zero. There are multiple wavelengths at which tuneouts occur, and the wavelengths also depend on the polarization of the light. This project will result in a precise measurement of the polarization dependence for Rb atoms at a wavelength near 790 nm, and also precise measurements near 420 nm. By combining these measurements, it will be possible to determine a number of small but important terms, such as the total contribution of the high-lying atomic states, and also the impact of interactions between the valence electron and the atomic core. In addition, spectroscopic measurements will be used to measure the matrix elements from the 5P excited state of Rb to high-lying states. Although this will not be a high-precision measurement, the results will be useful for interpreting experiments like the handedness measurement described above. Finally, the possibility of using Rb atoms for a handedness (or parity violation) measurement will be explored. Although the effect is smaller in Rb than in some other atoms, Rb atoms are very convenient to use with modern cooling and trapping techniques. It may be that the benefits of these techniques make a competitive option for improving precision, and the measurements would be able to take direct advantage of the improved matrix elements which will be obtained in the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
原子是由束缚在原子核上的电子组成的。这有时被描绘成电子绕着原子核旋转,就像行星绕着太阳旋转一样,但实际上,原子尺度上的运动是由量子力学定律支配的。这就是说,即使电子是一个点状粒子,也不可能准确地说出电子在任何给定时间的位置。相反,电子的位置以概率的方式分布在原子核周围。为了理解原子的性质,有必要知道这种分布的性质。不幸的是,很难直接高精度地观察分布。通常情况下,最好的方法是测量依赖于电子的原子属性,并使用这些值来约束分布。 一组有用的性质是偶极矩阵元,它有助于描述当原子置于电场中时电子如何运动。即使偶极矩阵元素也不能直接测量,但可以从几种类型的实验中可靠地推断出它们。一种特别精确的方法被称为调谐波长光谱法。在这个项目中,调谐测量将用于获得铷原子的几个矩阵元素的改进值。 举一个例子来说明为什么这些测量是重要的,考虑一个原子是否有“手性”的问题,就像右手或左手的手套。核物理学的理论和测量表明,原子核确实具有旋向性。这种旋向在核物理学中的作用对于理解早期宇宙中物质是如何产生的以及为什么宇宙看起来像现在这样非常重要。它可以在大型粒子加速器中进行研究,但这样做既困难又昂贵。在原子中,少量的手性从原子核传递到电子。虽然影响很小,但原子旋向可以非常精确地测量,这对改进核物理理论很有用。然而,将原子测量与核物理相关联需要精确的偶极矩阵元。这个项目所提供的改进值将有助于实现这一目的,并以这种方式帮助我们更好地理解宇宙为什么是这样。除了这些科学成果外,该项目还将为物理学本科生和研究生提供重要的培训机会。该项目中使用的技术适用于量子计算和量子通信等其他重要研究领域,以及激光和量子传感等国家重要技术。在调谐波长光谱学中,原子被一束远离原子共振的激光束照射。在大多数情况下,这会导致原子的能量发生变化。能量可以增加或减少,这取决于光的波长。然而,在特定的波长下,能量变化恰好为零。这些波长的值取决于原子的偶极矩阵元,通过精确测量波长,可以高精度地确定各种矩阵元的比率。本计画所使用的方法是原子干涉法来决定调谐波长。在这里,原子的整个波函数被分成在空间上分开的两个分支。一个分支通过激光器,任何由此产生的能量变化都会导致波函数的相移。当这两个分支后来重新组合时,可以检测到这种相移。通过调节激光器使相移为零来确定调谐波长。存在发生调谐的多个波长,并且波长还取决于光的偏振。该项目将导致Rb原子在790 nm附近波长的偏振依赖性的精确测量,以及420 nm附近的精确测量。通过结合这些测量,将有可能确定一些小但重要的项,例如高位原子态的总贡献,以及价电子和原子核之间相互作用的影响。此外,光谱测量将用于测量从Rb的5P激发态到高激发态的矩阵元素。虽然这不是一个高精度的测量,但结果将有助于解释像上述偏手性测量这样的实验。最后,将探讨使用Rb原子的手性(或宇称违反)测量的可能性。虽然Rb原子的影响比其他原子小,但Rb原子非常适合用于现代冷却和捕获技术。这些技术的好处可能是提高精度的一个有竞争力的选择,测量将能够直接利用改进的矩阵元素,这将在项目中获得。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Measurement of the Rb87 D -line vector tune-out wavelength
Rb87 D 线矢量调谐波长的测量
  • DOI:
    10.1103/physreva.105.l030802
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Fallon, A. J.;Moan, E. R.;Larson, E. A.;Sackett, C. A.
  • 通讯作者:
    Sackett, C. A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Sackett其他文献

Superfluid state of atomic 6 Li in a magnetic trap
磁阱中原子 6 Li 的超流态
  • DOI:
    10.1103/physreva.56.4864
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    M. Houbiers;R. Ferwerda;H. Stoof;W. McAlexander;Charles Sackett;R. Hulet
  • 通讯作者:
    R. Hulet
Fast phase stabilization of a low frequency beat note for atom interferometry.
用于原子干涉测量的低频拍音的快速相位稳定。

Charles Sackett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Sackett', 18)}}的其他基金

Precision Measurement of Atomic Dipole Matrix Elements Using Tune-Out Wavelength Spectroscopy
使用调谐波长光谱精确测量原子偶极子矩阵元素
  • 批准号:
    1607571
  • 财政年份:
    2016
  • 资助金额:
    $ 56.42万
  • 项目类别:
    Standard Grant
AIR Option 1: Technology Translation Passively pumped ultra-high vacuum cells for atomic physics applications
AIR 选项 1:技术转化用于原子物理应用的被动泵超高真空室
  • 批准号:
    1312220
  • 财政年份:
    2013
  • 资助金额:
    $ 56.42万
  • 项目类别:
    Standard Grant
Precision Measurements with a Condensate Interferometer
使用冷凝干涉仪进行精密测量
  • 批准号:
    0969916
  • 财政年份:
    2010
  • 资助金额:
    $ 56.42万
  • 项目类别:
    Continuing Grant
Precision Measurements with a Condensite Interferometer
使用凝聚态干涉仪进行精密测量
  • 批准号:
    0653349
  • 财政年份:
    2007
  • 资助金额:
    $ 56.42万
  • 项目类别:
    Continuing Grant
Obtaining Long Coherence Times in a Condensate Interferometer
在凝聚态干涉仪中获得长相干时间
  • 批准号:
    0244871
  • 财政年份:
    2003
  • 资助金额:
    $ 56.42万
  • 项目类别:
    Standard Grant

相似海外基金

Unraveling the biological roles of specific miRNAs, from experimental target identification through functional characterization
从实验目标识别到功能表征,揭示特定 miRNA 的生物学作用
  • 批准号:
    10566442
  • 财政年份:
    2023
  • 资助金额:
    $ 56.42万
  • 项目类别:
Two-phase flow numerical model development based on experimental characterization.
基于实验表征的两相流数值模型开发。
  • 批准号:
    RGPIN-2020-06629
  • 财政年份:
    2022
  • 资助金额:
    $ 56.42万
  • 项目类别:
    Discovery Grants Program - Individual
Identification and characterization of cancer cell states by novel computational and experimental technologies - Resubmission - 1
通过新颖的计算和实验技术识别和表征癌细胞状态 - 重新提交 - 1
  • 批准号:
    10650774
  • 财政年份:
    2022
  • 资助金额:
    $ 56.42万
  • 项目类别:
Interaction of ultrasound cavitation with membranes: Theoretical modelling and experimental characterization
超声空化与膜的相互作用:理论建模和实验表征
  • 批准号:
    RGPIN-2020-04729
  • 财政年份:
    2022
  • 资助金额:
    $ 56.42万
  • 项目类别:
    Discovery Grants Program - Individual
Experimental and numerical single water droplet impact stress measurement and impacted field zone characterization using single crystal dislocation rosettes
使用单晶位错玫瑰花结进行实验和数值单水滴冲击应力测量和冲击场区域表征
  • 批准号:
    546150-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 56.42万
  • 项目类别:
    Postdoctoral Fellowships
Identification and characterization of cancer cell states by novel computational and experimental technologies - Resubmission - 1
通过新颖的计算和实验技术识别和表征癌细胞状态 - 重新提交 - 1
  • 批准号:
    10448890
  • 财政年份:
    2022
  • 资助金额:
    $ 56.42万
  • 项目类别:
EAGER: SUPER: Experimental characterization of microscopic properties of superconducting polyhydrides; towards a realistic theoretical framework for warm superconductivity
EAGER:SUPER:超导聚氢化物微观特性的实验表征;
  • 批准号:
    2132692
  • 财政年份:
    2021
  • 资助金额:
    $ 56.42万
  • 项目类别:
    Continuing Grant
Multiphase Modelling and Experimental Characterization of Respiratory Microdroplet Suspension and Resuspension Dynamics Near Surfaces
近表面呼吸微滴悬浮和再悬浮动力学的多相建模和实验表征
  • 批准号:
    2039310
  • 财政年份:
    2021
  • 资助金额:
    $ 56.42万
  • 项目类别:
    Standard Grant
Two-phase flow numerical model development based on experimental characterization.
基于实验表征的两相流数值模型开发。
  • 批准号:
    RGPIN-2020-06629
  • 财政年份:
    2021
  • 资助金额:
    $ 56.42万
  • 项目类别:
    Discovery Grants Program - Individual
Experimental Characterization of Rotor Blades with Leading-Edge Tubercles
带有前缘结节的转子叶片的实验表征
  • 批准号:
    562470-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 56.42万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了