Narrow-Stencil Numerical Methods for Approximating Nonlinear Elliptic Partial Differential Equations

逼近非线性椭圆偏微分方程的窄模板数值方法

基本信息

  • 批准号:
    2111059
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The project will develop new computational methods for simulating various applications in astrophysics, fluid mechanics, image processing, wave propagation, geometric optics, biology, and combustion theory. The project will focus on how to reliably and efficiently approximate solutions to a class of abstract problems that can be used to model various phenomena relevant to the applications. The methods will be proven to yield accurate answers and will also be simple to implement. The project will involve activities towards mentoring and broadly training graduate students so that they are prepared for both an industrial career or a career in academia. The project will formulate, analyze, and test new narrow-stencil finite difference and discontinuous Galerkin methods for approximating viscosity solutions of fully nonlinear PDEs such as the Monge-Ampère equation, the Hamilton-Jacobi-Bellman equation, and the stationary Hamilton-Jacobi equation as well as solutions of second order elliptic PDEs in non-divergence form. The project will explore and extend the novel analytic techniques the PI recently developed to prove the admissibility, stability, and convergence of a simple non-monotone narrow-stencil finite difference method for stationary Hamilton-Jacobi-Bellman equations. Another objective is to formalize an abstract convergence framework based on the notion of generalized monotonicity rather than standard monotonicity, as the new methods do not require the use of wide-stencils. The new narrow-stencil methods are easy to formulate and implement and have higher-order truncation errors than monotone methods when first-order terms are present in the PDE. Another goal of the project is to use fully nonlinear ideas to motivate new analytic techniques for approximating positive solutions of nonlinear reaction diffusion equations; these will help eliminate the need for a comparison principle assumption when approximating fully nonlinear problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发新的计算方法,用于模拟天体物理学、流体力学、图像处理、波传播、几何光学、生物学和燃烧理论中的各种应用。 该项目将专注于如何可靠和有效地近似解决一类抽象问题,可用于模拟与应用程序相关的各种现象。 这些方法将被证明能够产生准确的答案,并且易于实施。 该项目将涉及指导和广泛培训研究生的活动,使他们为工业生涯或学术生涯做好准备。 该项目将制定,分析和测试新的窄模板有限差分和不连续Galerkin方法,用于近似完全非线性偏微分方程的粘性解,如Monge-Ampère方程,Hamilton-Jacobi-Bellman方程和稳态Hamilton-Jacobi方程以及非发散形式的二阶椭圆偏微分方程的解。 该项目将探索和扩展PI最近开发的新的分析技术,以证明一个简单的非单调窄模板有限差分方法的容许性,稳定性和收敛性,用于固定的Hamilton-Jacobi-Bellman方程。 另一个目标是形式化一个抽象的收敛框架的基础上的广义单调性的概念,而不是标准的单调性,因为新的方法不需要使用宽的stenosis。 新的窄模板方法是很容易制定和实施,并有高阶截断误差比单调方法时,一阶项存在于偏微分方程。 该项目的另一个目标是使用完全非线性的想法来激励新的分析技术,以近似非线性反应扩散方程的正解;这将有助于消除在近似完全非线性问题时对比较原理假设的需要。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A NARROW-STENCIL FRAMEWORK FOR CONVERGENT NUMERICAL APPROXIMATIONS OF FULLY NONLINEAR SECOND ORDER PDES
全非线性二阶偏微分方程收敛数值逼近的窄模板框架
Convergence, stability analysis, and solvers for approximating sublinear positone and semipositone boundary value problems using finite difference methods
  • DOI:
    10.1016/j.cam.2021.113880
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Lewis;Q. Morris;Yi Zhang
  • 通讯作者:
    T. Lewis;Q. Morris;Yi Zhang
Penalty parameter and dual-wind discontinuous Galerkin approximation methods for elliptic second order PDEs
Consistency results for the dual-wind discontinuous Galerkin method
双风间断伽辽金法的一致性结果
Convergence analysis of a symmetric dual-wind discontinuous Galerkin method for a parabolic variational inequality
抛物型变分不等式的对称双风间断伽辽金法的收敛性分析
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Lewis其他文献

HIV-Associated Neurocognitive Disorders: The First Longitudinal Follow-Up of a cART-Treated Cohort of Older People in Sub-Saharan Africa
HIV 相关神经认知障碍:对撒哈拉以南非洲接受 cART 治疗的老年人群体的首次纵向随访
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rebecca Spooner;Sherika Ranasinghe;S. Urasa;Marcella Yoseph;Sengua Koipapi;E. Mukaetova;Thomas Lewis;W. Howlett;M. Dekker;A. Kisoli;W. Gray;R. Walker;C. Dotchin;R. Kalaria;B. Lwezuala;Philip C. Makupa;R. Akinyemi;S. Paddick
  • 通讯作者:
    S. Paddick
An investigation into the corrosion behaviour and effect of inhibitor additions on commercial Zn-Mg-Al alloys
  • DOI:
    10.23889/suthesis.40713
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Lewis
  • 通讯作者:
    Thomas Lewis
Breast self-examination: A novel health promotion medium
  • DOI:
    10.1016/j.ejso.2013.01.182
  • 发表时间:
    2013-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Thomas Lewis
  • 通讯作者:
    Thomas Lewis
Evaluating the impact of avian paramyxovirus type 1 infection in poultry at live bird markets in Nigeria: defining hurdles to sustainable agriculture
  • DOI:
    10.1186/s12917-025-04508-2
  • 发表时间:
    2025-02-12
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Abel B. Ekiri;Aliyu Wakawa;Scott M. Reid;Joe James;Craig Ross;Alexander M. P. Byrne;Thomas Lewis;Joshua Lynton-Jenkins;Kehinde Adebowale;Erik Mijten;Gabriel Varga;Ian H. Brown;Ashley C. Banyard;Alasdair J. C. Cook
  • 通讯作者:
    Alasdair J. C. Cook
Local Discontinuous Galerkin Methods for One-Dimensional Second Order Fully Nonlinear Elliptic and Parabolic Equations
  • DOI:
    10.1007/s10915-013-9763-3
  • 发表时间:
    2013-08-17
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Xiaobing Feng;Thomas Lewis
  • 通讯作者:
    Thomas Lewis

Thomas Lewis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Lewis', 18)}}的其他基金

Graduate Research Fellowship Program (GRFP)
研究生研究奖学金计划(GRFP)
  • 批准号:
    2040433
  • 财政年份:
    2020
  • 资助金额:
    $ 12万
  • 项目类别:
    Fellowship Award

相似国自然基金

一种新型Stencil并行算法研究与优化实现
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
高性能、高可扩展和高可移植的Stencil代码生成和优化框架研究
  • 批准号:
    62072018
  • 批准年份:
    2020
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目

相似海外基金

SHF: AF: Small: Algorithms and a Code Generator for Faster Stencil Computations
SHF:AF:Small:用于更快模板计算的算法和代码生成器
  • 批准号:
    2318633
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Development of CFD Cut-Stencil Technology for Highly Complex Domains
针对高度复杂领域的 CFD 切割模板技术的开发
  • 批准号:
    RGPIN-2016-06768
  • 财政年份:
    2021
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Development of CFD Cut-Stencil Technology for Highly Complex Domains
针对高度复杂领域的 CFD 切割模板技术的开发
  • 批准号:
    RGPIN-2016-06768
  • 财政年份:
    2020
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
SHF: Small: Graph-X: Exploiting Hidden Parallelism of Irregular and Non-Stencil Computation in High-Level Synthesis
SHF:小:Graph-X:在高级综合中利用不规则和非模板计算的隐藏并行性
  • 批准号:
    1908177
  • 财政年份:
    2019
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Development of CFD Cut-Stencil Technology for Highly Complex Domains
针对高度复杂领域的 CFD 切割模板技术的开发
  • 批准号:
    RGPIN-2016-06768
  • 财政年份:
    2019
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Development of stencil calculation and communication model to achieve high scalability on massively parallel computation
开发模板计算和通信模型,以实现大规模并行计算的高可扩展性
  • 批准号:
    18K11336
  • 财政年份:
    2018
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Parallelization Enhancements to the Generalized Mapped-Stencil Scheme
通用映射模板方案的并行化增强
  • 批准号:
    526623-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 12万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of CFD Cut-Stencil Technology for Highly Complex Domains
针对高度复杂领域的 CFD 切割模板技术的开发
  • 批准号:
    RGPIN-2016-06768
  • 财政年份:
    2018
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
GPU Implementation of the Cut-Stencil Method for Numerical Solution of PDEs
用于偏微分方程数值求解的 Cut-Stencil 方法的 GPU 实现
  • 批准号:
    511227-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 12万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of CFD Cut-Stencil Technology for Highly Complex Domains
针对高度复杂领域的 CFD 切割模板技术的开发
  • 批准号:
    RGPIN-2016-06768
  • 财政年份:
    2017
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了