STTR Phase I: An AI-Enhanced Angiographic System to Guide Endovascular Treatment of Intracranial Aneurysms
STTR 第一阶段:人工智能增强血管造影系统指导颅内动脉瘤的血管内治疗
基本信息
- 批准号:2111865
- 负责人:
- 金额:$ 25.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact of this Small Business Technology Transfer (STTR) Phase I project falls within the larger scope of expanding artificial intelligence (AI) methods into health care applications. The application is focused on image guided endovascular surgical procedures for intracranial aneurysms (IA), which may cause subarachnoid hemorrhage, the most devastating type of hemorrhagic stroke. The current trends in treatment of aneurysms show that endovascular approach has become the mainstay procedure due to reduced surgical complications when compared with open skull surgery. Despite tremendous technological advances in devices and surgical instrumentation, as many as 30% of these lesions are not completely healed after the first surgical intervention, exposing patients to additional risks for complications due to multiple surgical procedures. The AI autonomous solution developed in this project will be the one of the first applications that provides intraoperative prognosis for six-month healing of an aneurysm after each surgical step to allow surgical adjustments, reducing the risk for ruptures and re-treatments from 30% to an estimated 5% and creating savings for the $65,000 in retreatments (roughly $1.95 B annually in the U.S.).This Small Business Technology Transfer (STTR) Phase I project will aim to develop a comprehensive and autonomous AI method that will provide intraoperative prognosis of complete healing for an IA at six months. In current clinical practice, neuro-interventionalists cannot guarantee successful healing of intracranial aneurysms immediately post-device placement. Treated patients have to wait a minimum of 3-6 months before their aneurysm is reassessed on medical imaging and the clinician decides if re-treatment is needed. During this critical time, patients are still at risk of rupture. In addition, re-treatments have higher risk to the patient as well as bear a financial burden on hospitals and insurance companies. The proposed algorithms will be fully integrated with surgical equipment and will allow dynamic angiographic analysis to derive physics-based parameters related to the nature of blood flow inside the aneurysm sac. These parameters are combined with a machine learning algorithm to provide a prediction as to whether the treatment is sufficient for a full healing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个小企业技术转让(STTR)第一阶段项目的更广泛影响福尔斯将人工智能(AI)方法扩展到医疗保健应用的更大范围。该应用程序主要用于颅内动脉瘤(IA)的图像引导血管内外科手术,颅内动脉瘤可能导致蛛网膜下腔出血,这是最具破坏性的出血性卒中类型。动脉瘤治疗的当前趋势表明,与开颅手术相比,血管内入路由于手术并发症减少而已成为主流手术。尽管器械和手术器械的技术进步巨大,但这些病变中有多达30%在首次手术干预后未完全愈合,使患者面临因多次手术导致并发症的额外风险。该项目中开发的AI自主解决方案将成为首批应用之一,它在每个手术步骤后为动脉瘤的六个月愈合提供术中预后,以允许手术调整,将破裂和再治疗的风险从30%降低到估计的5%,并为再治疗节省65,000美元(美国每年约1.95美元B)。这个小企业技术转让(STTR)第一阶段项目的目标是开发一种全面和自主的人工智能方法,该方法将在六个月内为IA提供完全愈合的术中预后。在目前的临床实践中,神经介入医生不能保证颅内动脉瘤在器械置入后立即成功愈合。接受治疗的患者必须等待至少3-6个月,然后在医学成像上重新评估他们的动脉瘤,临床医生决定是否需要重新治疗。在这个关键时刻,患者仍然面临破裂的风险。此外,再治疗对患者有更高的风险,并给医院和保险公司带来经济负担。所提出的算法将与手术设备完全集成,并将允许动态血管造影分析,以获得与动脉瘤囊内血流性质相关的基于物理的参数。这些参数与机器学习算法相结合,可以预测治疗是否足以完全治愈。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohammad Mahdi Shiraz Bhurwani其他文献
Mohammad Mahdi Shiraz Bhurwani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohammad Mahdi Shiraz Bhurwani', 18)}}的其他基金
SBIR Phase II: An AI-Enhanced Angiographic System to Guide Endovascular Treatment of Intracranial Aneurysms
SBIR II 期:人工智能增强血管造影系统指导颅内动脉瘤的血管内治疗
- 批准号:
2304388 - 财政年份:2023
- 资助金额:
$ 25.56万 - 项目类别:
Cooperative Agreement
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
STTR Phase I: Exploring Artificial Intelligence (AI)-Enabled Skills Data For Education-to-Employment Transitions and Career Support
STTR 第一阶段:探索人工智能 (AI) 支持的技能数据,以实现从教育到就业的过渡和职业支持
- 批准号:
2112276 - 财政年份:2022
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
STTR Phase II: Artificial Intelligence (AI)-based Development of Neutralizing Antibodies for SARS-CoV-2
STTR 第二阶段:基于人工智能 (AI) 的 SARS-CoV-2 中和抗体开发
- 批准号:
2136860 - 财政年份:2022
- 资助金额:
$ 25.56万 - 项目类别:
Cooperative Agreement
STTR Phase I: Camera-Based Multimodal AI for Health Monitoring
STTR 第一阶段:基于摄像头的多模态人工智能,用于健康监测
- 批准号:
2136728 - 财政年份:2022
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
STTR Phase I: Using AI to develop a red blood cell health index for the monitoring of sickle cell disease
STTR 第一阶段:利用人工智能开发红细胞健康指数,用于监测镰状细胞病
- 批准号:
2112027 - 财政年份:2021
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
STTR Phase I: COVID-19: AI-based Development of Neutralizing Antibodies for SARS-CoV-2
STTR 第一阶段:COVID-19:基于人工智能的 SARS-CoV-2 中和抗体开发
- 批准号:
2027586 - 财政年份:2020
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
STTR Phase I: AI-assisted Assessment, Tracking, and Reporting of COVID-19 Severity on Chest CT
STTR 第一阶段:人工智能辅助胸部 CT 评估、跟踪和报告 COVID-19 严重程度
- 批准号:
2032534 - 财政年份:2020
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
STTR Phase I: Artificial Intelligence Tool to Optimize Organ Transplantation Outcomes (Transplant-AI)
STTR 第一阶段:优化器官移植结果的人工智能工具(Transplant-AI)
- 批准号:
2014827 - 财政年份:2020
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
STTR Phase I: An Artificial Intelligence (AI)-based algorithm using nanosensor-based salivary analytics to predict clinical outcomes in symptomatic COVID-19 patients
STTR 第一阶段:基于人工智能 (AI) 的算法,使用基于纳米传感器的唾液分析来预测有症状的 COVID-19 患者的临床结果
- 批准号:
2032579 - 财政年份:2020
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
STTR Phase I: EdVision: AI-powered academic guidance for PhD programs
STTR 第一阶段:EdVision:人工智能驱动的博士课程学术指导
- 批准号:
2014338 - 财政年份:2020
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
STTR Phase I: Simplification AI for Workforce Upskilling
STTR 第一阶段:简化人工智能以提高劳动力技能
- 批准号:
1914104 - 财政年份:2019
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant














{{item.name}}会员




