Collaborative Research: Plasma-enhanced Electrostatic Precipitation of Diesel Particulates using High Voltage Nanosecond Pulses
合作研究:使用高压纳秒脉冲对柴油颗粒进行等离子体增强静电沉淀
基本信息
- 批准号:2112881
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The adverse health effects of diesel engine particulate emissions have been firmly established by many toxicological studies over the past few decades. These fine particulates smaller than 2.5 microns have been linked to premature cardiovascular and respiratory deaths, as well as lung cancer. While electrostatic precipitation was first demonstrated in 1824, thus far, use of the technology to remove combustion particulates has been limited to large power plants that can accommodate large secondary treatment devices. Reducing the overall size of this technology is necessary to open up new applications for electrostatic precipitation in mobile sources, such as ships and trucks. Our approach to electrostatic precipitation using plasma (a superheated state of matter) together with ultra-high frequency high voltage pulsing represents a novel application of an old technology. Preliminary results have shown significant promise in reducing particulate emissions, but the underlying mechanisms are poorly understood. The goal of this project is to address these knowledge gaps and identify the mechanisms for particulate removal in plasma enhanced electrostatic precipitation. If successful, this approach will enable development of much more compact electrostatic precipitators that could potentially transform diesel particulate mitigation technology for mobile sources. Further benefits to society result from outreach to high school teachers in the Los Angeles area to improve STEM teaching for underrepresented students. Outreach through professional societies will improve chemistry teaching and provide research opportunities for undergraduate students, thus improving scientific literacy.Preliminary results by the research team show that nanosecond high voltage pulsed plasma provides significant enhancement over conventional electrostatic precipitators in removing diesel engine particulates. However, the fundamental mechanism(s) underlying this enhancement remain poorly understood. The overall goal of this research is to explore the application of plasma enhanced nanosecond high voltage pulsed discharges as a novel approach for electrostatic precipitation. The specific research objectives designed to achieve this goal include: i) spectroscopic examination of ion mobilities and species generated by nanosecond high voltage pulse discharge, ii) characterization of size-dependent particle charge distributions, iii) multi-physics computational fluid dynamics modeling of nanosecond high voltage pulse electrostatic precipitation, and iv) investigation of the role of streamers in the ESP process. Results from this systematic study will provide mechanistic insight into the plasma enhanced electrostatic precipitation process. Such information is necessary to design systems to overcome current limitations and further improve particle removal efficiency. The nature of this work is inherently interdisciplinary, involving high voltage electronics, electrostatics, and fluid-dynamics, as well as combustion and aerosol science. This project brings together researchers with complimentary expertise to perform the research, as well as provide collaborative training opportunities for the student researchers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几十年中,许多毒理学研究已经牢固地确定了柴油发动机颗粒物的不利影响。这些细小的微粒小于2.5微米已与心血管过早和呼吸道死亡以及肺癌有关。虽然静电沉淀在1824年首次证明,但到目前为止,使用该技术去除燃烧颗粒已限于可以容纳大型次要处理装置的大型发电厂。减少这项技术的整体规模对于开放移动源(例如船舶和卡车)的静电降水的新应用是必要的。我们使用血浆(物质的过热状态)以及超高频率高电压脉冲的静电沉淀方法代表了旧技术的新应用。初步结果在减少颗粒物排放方面表现出了巨大的希望,但基本机制知之甚少。该项目的目的是解决这些知识差距,并确定血浆增强静电沉淀中颗粒物去除的机制。如果成功的话,这种方法将能够开发更紧凑的静电阻止者,从而有可能改变移动源的柴油颗粒缓解技术。洛杉矶地区的高中教师外展对社会的进一步好处,以改善代表性不足的学生的STEM教学。通过专业社会的外展活动将改善化学教学,并为本科生提供研究机会,从而提高科学素养。研究团队的最佳结果表明,纳秒高电压脉冲等离子体可在去除柴油发动机颗粒方面对传统的静电降水剂进行显着增强。但是,这种增强的基本机制仍然鲜为人知。这项研究的总体目标是探索血浆增强的纳秒高压脉冲放电作为静电沉淀的新方法。旨在实现此目标的具体研究目标包括:i)纳米秒高电压脉冲排放产生的离子迁移率和物种的光谱检查,ii)依赖大小依赖粒子电荷分布的表征,iii)多物理计算流体流体动力学动力学模型,对纳米秒高电压脉冲脉冲静电量沉淀和iv)的研究。这项系统研究的结果将提供有关血浆增强静电沉淀过程的机械洞察力。这些信息对于设计系统以克服当前局限性并进一步提高粒子去除效率是必要的。这项工作的性质本质上是跨学科的,涉及高压电子,静电和流体动力学,以及燃烧和气溶胶科学。该项目汇集了具有免费专业知识的研究人员来进行研究,并为学生研究人员提供了协作培训机会。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估评估标准通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heejung Jung其他文献
Effect of hydrogen addition on combustion and thermal characteristics of impinging non-premixed jet flames for various heating value gases
- DOI:
10.1016/j.csite.2023.103173 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:
- 作者:
Hyeon Taek Nam;Seungro Lee;Heejung Jung - 通讯作者:
Heejung Jung
Effect of anatase phase on electrochemical properties of the TiO2(B) negative electrode for lithium-ion battery application
锐钛矿相对锂离子电池TiO2(B)负极电化学性能的影响
- DOI:
10.1016/j.cap.2013.01.012 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Bo;K. Yun;Heejung Jung;Seung‐Taek Myung;Sang‐Chul Jung;W. Kang;Sun - 通讯作者:
Sun
Performance improvement of liquid phase plasma processed carbon blacks electrode in lithium ion battery applications
锂离子电池应用中液相等离子体处理炭黑电极的性能改进
- DOI:
10.1007/s12541-014-0520-9 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
K. Yun;Bo;E. Noh;Heejung Jung;H. Oh;W. Kang;Sang‐Chul Jung;Seung‐Taek Myung;Sun - 通讯作者:
Sun
Does Representation Similarity Capture Function Similarity?
表示相似性是否捕获了函数相似性?
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Lucas Hayne;Heejung Jung;R. M. Carter - 通讯作者:
R. M. Carter
Modeling CO 2 Concentrations in Vehicle Cabin 2013-01-1497 Published 04 / 08 / 2013
车内 CO 2 浓度建模 2013-01-1497 发布于 2013 年 4 月 8 日
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Heejung Jung;Univ - 通讯作者:
Univ
Heejung Jung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Heejung Jung', 18)}}的其他基金
Fate and transformation of diesel emissions
柴油机排放的命运和转变
- 批准号:
1233038 - 财政年份:2012
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
相似国自然基金
基于物理启发领域泛化的跨装置等离子体破裂预测方法研究
- 批准号:12375219
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
常压空气暖等离子体耦合催化剂固氮研究
- 批准号:52377155
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
船机排温条件下等离子体与催化剂协同的氨分解制氢机制研究
- 批准号:52301382
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分子印迹磁性有序多孔光子晶体微球等离子体3DSERS仿生芯片高通量检测谷物中的多元真菌毒素研究
- 批准号:32372418
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高精度芯片刻蚀机用铝合金抗等离子体腐蚀涂层的研究
- 批准号:52371057
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: ECLIPSE: Physical and Chemical Insights into Particle-Plasma Interactions in Dusty Plasma using Optical Trapping and Multi-Fold Laser Diagnostics
合作研究:ECLIPSE:使用光学捕获和多重激光诊断对尘埃等离子体中的粒子-等离子体相互作用进行物理和化学洞察
- 批准号:
2308948 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Environmental Agents as Modulators of Disease Processes
环境因素作为疾病过程的调节剂
- 批准号:
10852393 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Rationally Designed, Target-specific Imaging Probes for Nephro-urology Diagnoses
用于肾泌尿科诊断的合理设计、针对特定目标的成像探头
- 批准号:
10659440 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Cardiometabolic Consequences And Pathway Of Weight Gain Associated With Dolutegravir-Based Antiretroviral Therapy In Haiti. A Collaborative Study Between GHESKIO And CCASAnet
海地基于多替拉韦的抗逆转录病毒治疗相关的心脏代谢后果和体重增加途径。
- 批准号:
10750906 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Collaborative Research: Rational Design of Alloys with Low-Melting-Point Metals for High-yield, Non-thermal Plasma-assisted Catalytic Production of Ammonia
合作研究:合理设计低熔点金属合金,用于高产率非热等离子体辅助催化生产氨
- 批准号:
2403970 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant