CRCNS Research Project: Multiply and Conquer: Replica-Mean-Field Limit for Neural Networks
CRCNS 研究项目:乘法与征服:神经网络的复制平均场极限
基本信息
- 批准号:2113213
- 负责人:
- 金额:$ 65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Artificial intelligence can now rival human performance in tasks such as speech or object recognition, language translation, and autonomous navigation. However, by contrast with artificial computations supported by fragile, hardwired circuits, biological computations appear to robustly emerge in noisy, disordered neural networks. Understanding how meaningful computations emerge from the seemingly random interactions of neural constituents remains a challenge. To solve this, one can hope to mine biological networks for their design principles. Unfortunately, such a task is hindered by the sheer complexity of neural circuits. Deciphering neural computations will only be achieved through the simplifying lens of a biophysically relevant theory. To date, neural computations have been studied theoretically in idealized models whereby an infinite number of neurons communicate via vanishingly small interactions. Such an approach neglects that neural computations are carried out by a finite number of cells interacting via a finite number of synapses. This approach precludes understanding how neural circuits reliably process information in spite of neural variability, which depends on these finite numbers. To remedy this point, the PIs will develop a novel theoretical framework allowing for the analysis of neural computations in neural circuits with finite-size structure. The PIs will leverage ideas from the theory of communication networks to understand how biophysically relevant neural network models can reliably process information via noisy, disordered circuits. This approach will provide the basis for categorizing distinct brain operating regimen based on their stability and will help designing strategies to stabilize neural systems in their healthy regime.In contrast to “divide and conquer” approaches, which equate a system with the mere sum of its parts, the PIs will decipher the activity of neural networks via a “multiply and conquer” approach. This approach considers limit networks made of infinitely many replicas with the same basic neural structure. The key point is that these so-called replica-mean-field networks are in fact simplified, tractable versions of neural networks that retain important features of the finite network structure of interest. The finite size of neuronal populations and synaptic interactions is a core determinant of neural activity, being responsible for non-zero correlation in the spiking activity and for finite transition rates between metastable neural states. Accounting for these finite-size phenomena is the core motivation for the development of the replica approach. The expected outcome is a mechanistic understanding of the constraints bearing on computations in finite-size neural circuits, especially in terms of their reliability, speed, and cost. This will involve characterizing the finite-structure dependence of: (i) the regime of spiking correlations, which is a fundamental determinant of the neural code and (ii) the transition rates between metastable neural states, which are thought to control the processing and gating of information. In both cases, the methodology will be based on the comparison between solutions to reduced functional equations, discrete-event simulations, and neural data sets. The ultimate goal will be to analyze biophysically detailed models in order to produce a fitting framework that is restrictive enough to formulate and validate experimental predictions.This award is being co-funded by the MPS Division of Mathematical Sciences and the CISE Information and Intelligent Systems (IIS) through the CRCNA and BRAIN Programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能现在可以在语音或物体识别、语言翻译和自主导航等任务中与人类的表现相媲美。然而,与由脆弱的硬连线电路支持的人工计算相比,生物计算似乎在嘈杂、无序的神经网络中稳健地出现。理解有意义的计算是如何从神经成分看似随机的相互作用中产生的仍然是一个挑战。为了解决这个问题,人们可以希望挖掘生物网络的设计原则。不幸的是,神经回路的复杂性阻碍了这样的任务。只有通过生物病理学相关理论的简化透镜,才能破译神经计算。到目前为止,神经计算已经在理想化模型中进行了理论研究,其中无限数量的神经元通过极小的相互作用进行通信。这种方法忽略了神经计算是由有限数量的细胞通过有限数量的突触相互作用来进行的。这种方法排除了理解神经回路如何可靠地处理信息,尽管神经变异性,这取决于这些有限的数字。为了弥补这一点,PI将开发一个新的理论框架,允许分析具有有限大小结构的神经电路中的神经计算。PI将利用通信网络理论的思想来理解生物药理学相关的神经网络模型如何通过嘈杂,无序的电路可靠地处理信息。这种方法将为基于其稳定性对不同的大脑操作方案进行分类提供基础,并将有助于设计使神经系统稳定在其健康状态的策略。与将系统等同于其部分的简单总和的“分而治之”方法相比,PI将通过“乘而治之”方法破译神经网络的活动。这种方法考虑了由无限多个具有相同基本神经结构的副本组成的极限网络。关键点是,这些所谓的复制平均场网络实际上是神经网络的简化、易于处理的版本,保留了感兴趣的有限网络结构的重要特征。神经元群体和突触相互作用的有限大小是神经活动的核心决定因素,负责尖峰活动中的非零相关性和亚稳态神经状态之间的有限转换速率。考虑到这些有限大小的现象是副本方法发展的核心动机。预期的结果是一个机械的理解有限大小的神经电路的计算上的约束,特别是在其可靠性,速度和成本方面。这将涉及表征以下的有限结构依赖性:(i)尖峰相关性的机制,这是神经代码的基本决定因素;(ii)亚稳态神经状态之间的转换速率,这被认为控制信息的处理和门控。在这两种情况下,该方法将基于简化函数方程,离散事件模拟和神经数据集的解决方案之间的比较。最终目标是分析生物医学详细模型,以产生一个合适的框架,该框架具有足够的限制性,可以制定和验证实验预测。该奖项由MPS数学科学部和CISE信息和智能系统(IIS)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thibaud Taillefumier其他文献
A structured scaffold underlies activity in the hippocampus
海马体活动的基础是结构化的支架
- DOI:
10.1101/2021.11.20.469406 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
D. Mulders;M. Y. Yim;Jae Sung Lee;Albert K Lee;Thibaud Taillefumier;I. Fiete - 通讯作者:
I. Fiete
A Transition to Sharp Timing in Stochastic Leaky Integrate-and-Fire Neurons Driven by Frozen Noisy Input
由冻结噪声输入驱动的随机泄漏积分和激发神经元向锐时序的转变
- DOI:
10.1162/neco_a_00577 - 发表时间:
2014 - 期刊:
- 影响因子:2.9
- 作者:
Thibaud Taillefumier;M. Magnasco - 通讯作者:
M. Magnasco
Exact Event-Driven Implementation for Recurrent Networks of Stochastic Perfect Integrate-and-Fire Neurons
随机完美集成和激发神经元循环网络的精确事件驱动实现
- DOI:
10.1162/neco_a_00346 - 发表时间:
2012 - 期刊:
- 影响因子:2.9
- 作者:
Thibaud Taillefumier;J. Touboul;M. Magnasco - 通讯作者:
M. Magnasco
Principal Component
- DOI:
10.32388/90rsfs - 发表时间:
2020-02 - 期刊:
- 影响因子:0
- 作者:
Thibaud Taillefumier - 通讯作者:
Thibaud Taillefumier
A Haar-like Construction for the Ornstein Uhlenbeck Process
Ornstein Uhlenbeck 过程的类 Haar 构造
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Thibaud Taillefumier;M. Magnasco - 通讯作者:
M. Magnasco
Thibaud Taillefumier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thibaud Taillefumier', 18)}}的其他基金
CAREER: Nontrivial correlations in the neural code: a question of synchrony
职业:神经代码中的非平凡相关性:同步问题
- 批准号:
2239679 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Project Incubation: Training Undergraduates in Collaborative Research Ethics
项目孵化:培养本科生合作研究伦理
- 批准号:
2316154 - 财政年份:2024
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
Collaborative Research: GEO OSE Track 2: Project Pythia and Pangeo: Building an inclusive geoscience community through accessible, reusable, and reproducible workflows
合作研究:GEO OSE 第 2 轨道:Pythia 和 Pangeo 项目:通过可访问、可重用和可重复的工作流程构建包容性的地球科学社区
- 批准号:
2324304 - 财政年份:2024
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
RESEARCH PROPOSAL What is your project title? Development of additive manufactured polymeric seals for low molecular weight gases
研究计划 您的项目名称是什么?
- 批准号:
2908868 - 财政年份:2024
- 资助金额:
$ 65万 - 项目类别:
Studentship
Collaborative Research: GEO OSE Track 2: Project Pythia and Pangeo: Building an inclusive geoscience community through accessible, reusable, and reproducible workflows
合作研究:GEO OSE 第 2 轨道:Pythia 和 Pangeo 项目:通过可访问、可重用和可重复的工作流程构建包容性的地球科学社区
- 批准号:
2324302 - 财政年份:2024
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
Collaborative Research: GEO OSE Track 2: Project Pythia and Pangeo: Building an inclusive geoscience community through accessible, reusable, and reproducible workflows
合作研究:GEO OSE 第 2 轨道:Pythia 和 Pangeo 项目:通过可访问、可重用和可重复的工作流程构建包容性的地球科学社区
- 批准号:
2324303 - 财政年份:2024
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
HSI Pilot Project: Applying a Research-Based Learning Approach to Enhance Biomanufacturing Skills
HSI 试点项目:应用基于研究的学习方法来提高生物制造技能
- 批准号:
2345033 - 财政年份:2024
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
HSI Implementation and Evaluation Project: Undergraduate Research Experiences in Machine Learning for First Generation Students
HSI 实施和评估项目:第一代学生的机器学习本科研究经验
- 批准号:
2345361 - 财政年份:2024
- 资助金额:
$ 65万 - 项目类别:
Continuing Grant
The Tipuna Project: Intergenerational Healing, Settler Accountability and Decolonising Participatory Action Research in Aotearoa
Tipuna 项目:新西兰的代际疗愈、定居者责任和非殖民化参与行动研究
- 批准号:
AH/X008223/1 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Research Grant
Drug decriminalization in British Columbia: An equity-oriented qualitative research project
不列颠哥伦比亚省的毒品非刑事化:一个以公平为导向的定性研究项目
- 批准号:
480086 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Operating Grants
Digital cognitive-behavior therapy for anxiety and depressive disorders: Building an impactful research project from international partnerships and knowledge exchange in primary care
针对焦虑和抑郁症的数字认知行为疗法:通过初级保健领域的国际合作和知识交流建立一个有影响力的研究项目
- 批准号:
480808 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Miscellaneous Programs