Understanding the Nanoscale Interactions of Surface Plasmon Mediated Semiconductor Surfaces with Water and Light for Renewable Energy Harvesting and Conversion

了解表面等离子体介导的半导体表面与水和光的纳米级相互作用,用于可再生能源收集和转换

基本信息

  • 批准号:
    2113505
  • 负责人:
  • 金额:
    $ 33.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

New surfaces and interfaces for clean energy harvesting and storage and for ultrasensative chemical analysis are needed. This project involves design of ultrasensitive noble metal tips to investigate solid semiconductor surfaces and interfaces under photoelectrochemical operation conditions. Light energy absorption and conversion capabilities of these surfaces in the presence of noble metal nanoparticles can be resolved at the nanometer scale. This research would precisely quantify surface enhancement factors that contribute to light energy storage into chemical bonds, and also allow direct comparison with theoretical calculations. The results of this research would greatly help understand light-matter interactions in the presence of noble metal antenna. The education activities include science cafés, undergraduate research experience, and classroom module demonstrations to enhance student-centered learning and public awareness of nanotechnology and clean energy. The educational activities will help inclusive recruiting and training and the retention of underrepresented minority students.This research will develop an electrochemical apertureless plasmonic antenna technique and theoretical platform to study the interactions of plasmonic nanomaterials and photoactive semiconductors under electrochemical operation conditions. The key feature of this system is a nanoelectrode with a single plasmon nanoparticle for electrochemical, optical, and surface topology imaging of photoelectrochemical activities of a semiconductor electrode with nanometer spatial resolutions. This research would experimentally validate light absorption, charge carrier generation, and transport and storage into chemical bonds in the presence of a plasmonic metal. The research design creates a model system that can fit multiphysics simulation prediction and also enables spectroscopy enhancement capability for resolving local redox reaction kinetics of catalysts. The educational activities will be integrated with the proposed research for student training in an interdisciplinary research environment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
需要用于清洁能源收集和存储以及超灵敏化学分析的新表面和界面。该项目涉及超灵敏贵金属尖端的设计,以研究光电化学操作条件下的固体半导体表面和界面。在存在贵金属纳米粒子的情况下,这些表面的光能吸收和转换能力可以在纳米尺度上解析。这项研究将精确量化有助于光能储存到化学键中的表面增强因子,并且还可以与理论计算进行直接比较。这项研究的结果将极大地帮助理解贵金属天线存在下的光与物质的相互作用。教育活动包括科学咖啡馆、本科生研究体验和课堂模块演示,以增强以学生为中心的学习和公众对纳米技术和清洁能源的认识。这些教育活动将有助于包容性的招募和培训以及留住代表性不足的少数族裔学生。本研究将开发一种电化学无孔径等离子体天线技术和理论平台,以研究电化学操作条件下等离子体纳米材料和光敏半导体的相互作用。该系统的主要特点是具有单个等离子体纳米颗粒的纳米电极,用于以纳米空间分辨率对半导体电极的光电化学活动进行电化学、光学和表面拓扑成像。这项研究将通过实验验证在等离子体金属存在的情况下光吸收、电荷载流子生成以及化学键的传输和存储。研究设计创建了一个模型系统,可以适应多物理场模拟预测,还可以增强光谱增强能力来解析催化剂的局部氧化还原反应动力学。教育活动将与跨学科研究环境中的学生培训拟议研究相结合。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transparent Ultramicroelectrodes for Studying Interfacial Charge-Transfer Kinetics of Photoelectrochemical Water Oxidation at TiO 2 Nanorods with Scanning Electrochemical Microscopy
用扫描电化学显微镜研究 TiO 2 纳米棒光电化学水氧化界面电荷转移动力学的透明超微电极
  • DOI:
    10.1021/acs.analchem.1c02598
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Li, Xiao;Pan, Shanlin
  • 通讯作者:
    Pan, Shanlin
Electrocatalytic CO 2 Reduction at Pyridine Functionalized Au Nanoparticles Supported by NanoCOT Electrode
NanoCOT 电极支持的吡啶功能化金纳米粒子电催化 CO 2 还原
  • DOI:
    10.1149/1945-7111/aca17f
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Ashaduzzaman, Md;Kang, Xin;Strange, Lyndi;Pan, Shanlin
  • 通讯作者:
    Pan, Shanlin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shanlin Pan其他文献

Plasmon-enhanced conjugated polymer luminescence using silver nanoparticles and sequentially adsorbed polyelectrolyte spacers
使用银纳米粒子和顺序吸附的聚电解质间隔物的等离激元增强共轭聚合物发光
  • DOI:
    10.1117/12.620853
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shanlin Pan;L. Rothberg;A. Nolte;M. Rubner;I. Gorodetskaya;T. Swager
  • 通讯作者:
    T. Swager
Plasmon‐Enhanced Radiative Rates and Applications to Organic Electronics
等离激元增强辐射率及其在有机电子学中的应用
Microporous Aluminum Oxide Membrane-Based Optical Interferometric Sensor
微孔氧化铝膜光学干涉传感器
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao‐Li Zhang;Shanlin Pan;Yafei Zhang;Hu
  • 通讯作者:
    Hu
NEW MATERIALS FOR OPTICAL SENSING OF EXPLOSIVES COPOLYMERS CONTAINING 2-VINYL-4,6-DIAMINO-1,3,5-TRIAZINE AND CO-CRYSTALS OF ELECTRON RICH AROMATIC MOLECULES AND
用于含有 2-乙烯基-4,6-二氨基-1,3,5-三嗪和富电子芳香分子共晶的炸药共聚物光学传感的新材料
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. K. Mcneil;D. Nikles;M. Bakker;C. Brazel;Shanlin Pan;S. Street
  • 通讯作者:
    S. Street
Aqueous gold sols of rod-shaped particles prepared by the template method
模板法制备棒状颗粒水性金溶胶

Shanlin Pan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shanlin Pan', 18)}}的其他基金

RII-BEC: Individual Based Talent Bridge from Minority-Serving Institutions to Graduate School and Energy Industry
RII-BEC:从少数族裔服务机构到研究生院和能源行业的个人人才桥梁
  • 批准号:
    2225852
  • 财政年份:
    2022
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Standard Grant
Understanding Redox Reaction Mechanism and Dynamics at Single Nanoparticles Using ECL and Scanning Nanoelectrode with Improved Spatial and Spectral Resolution
使用 ECL 和具有改进的空间和光谱分辨率的扫描纳米电极了解单个纳米粒子的氧化还原反应机制和动力学
  • 批准号:
    1508192
  • 财政年份:
    2015
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Standard Grant
Surface-Enhanced Solar Energy Conversion System for Advancing Alternative Energy
表面增强型太阳能转换系统,促进替代能源发展
  • 批准号:
    1153120
  • 财政年份:
    2012
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Impact of MRI contrast agent design on nanoscale interactions with neutrophils and platelets
职业:MRI 造影剂设计对中性粒细胞和血小板纳米级相互作用的影响
  • 批准号:
    2339015
  • 财政年份:
    2024
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Standard Grant
Conference: 2024 NanoFlorida Conference: New Frontiers in Nanoscale interactions
会议:2024 年纳米佛罗里达会议:纳米尺度相互作用的新前沿
  • 批准号:
    2415310
  • 财政年份:
    2024
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Standard Grant
CAREER: Engineering Chiral Nanoscale Interactions to Enhance Nanomaterial Transport and Uptake in Tissue and at Biointerfaces
职业:工程手性纳米级相互作用以增强组织和生物界面中纳米材料的运输和吸收
  • 批准号:
    2337387
  • 财政年份:
    2024
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Continuing Grant
Ultrafast Nanodosimetry - the role of the nanoscale in radiation interactions in matter.
超快纳米剂量测定法 - 纳米尺度在物质辐射相互作用中的作用。
  • 批准号:
    EP/W017245/1
  • 财政年份:
    2023
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Research Grant
Cloaking Anisotropic Capillary Interactions Through Tunable Nanoscale Surface Topography
通过可调纳米级表面形貌隐藏各向异性毛细管相互作用
  • 批准号:
    2232579
  • 财政年份:
    2023
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Molecular and Nanoscale Structure and Interactions of PFAS at Interfaces and Mixed Surfactant Systems
合作研究:PFAS 的分子和纳米结构以及界面和混合表面活性剂体系的相互作用
  • 批准号:
    2227128
  • 财政年份:
    2023
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Standard Grant
Tip enhanced Terahertz - Raman for investigating graphene-water interactions at the nanoscale
尖端增强太赫兹 - 拉曼用于研究纳米级石墨烯-水相互作用
  • 批准号:
    22KF0394
  • 财政年份:
    2023
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: Molecular and Nanoscale Structure and Interactions of PFAS at Interfaces and Mixed Surfactant Systems
合作研究:PFAS 的分子和纳米结构以及界面和混合表面活性剂体系的相互作用
  • 批准号:
    2227135
  • 财政年份:
    2023
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Standard Grant
CAREER: Nanoscale Interactions of Stimuli-responsive Nanoparticles with Enzymes
职业:刺激响应纳米颗粒与酶的纳米级相互作用
  • 批准号:
    2239629
  • 财政年份:
    2023
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Standard Grant
CAREER: Mechanistic understanding of the nanoscale interactions of structurally tunable 3D assemblies of MXenes-polyelectrolytes
职业:对 MXenes-聚电解质结构可调 3D 组件的纳米级相互作用的机理理解
  • 批准号:
    2238908
  • 财政年份:
    2023
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了