Collaborative Research: SaTC: EDU: A Hands-on Approach to Securing Self-Driving Networks
合作研究:SaTC:EDU:保护自动驾驶网络安全的实践方法
基本信息
- 批准号:2113945
- 负责人:
- 金额:$ 17.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Today’s computer networks have grown both in complexity and in scale, in part as a response to diverse connectivity requirements in the era of the Internet of Things, Cloud 3.0, and Big Data. Existing network management solutions cannot keep up with the demand for solutions to real-time network management problems resulting from these increasingly complex networks. Network management requires a fundamentally new approach in which networks can autonomously control, configure, and manage themselves. While these “self-driving networks” offer numerous opportunities for efficient network management, they introduce new threats and attack vectors that must be addressed to secure them. Unfortunately, there is currently a shortfall of professionals trained in autonomous and intelligent network security and a shortfall of content with which to train these professionals. This project will address these shortfalls by developing lab-intensive modules that enable undergraduate students to gain fundamental and advanced knowledge in securing next-generation self-driving networks. The project team will develop six self-contained modules with comprehensive coverage of the techniques, tools, and methods required to secure self-driving networks. The modules will cover (1) attack investigation and analysis of legacy, Software Defined Networking (SDN), and adversarial attacks; (2) hunting for vulnerabilities using static analysis, software component analysis, automated known attack patterns, and behavioral analysis; (3) network-wide data collection using classic and OpenFlow based approaches; (4) protection using runtime application self-protection, automated patching, and security information and event management; (5) evaluation using continuous adaptive risk and thrust assessment; and (6) action using security orchestration, automation and response. In addition, this project aims to increase the participation of underrepresented groups in STEM by organizing workshops and participating in professional conferences. The project team will also organize a workshop to disseminate the modules to interested faculty members from other organizations.This project is supported by the Secure and Trustworthy Cyberspace (SaTC) program, which funds proposals that address cybersecurity and privacy, and in this case specifically cybersecurity education. The SaTC program aligns with the Federal Cybersecurity Research and Development Strategic Plan and the National Privacy Research Strategy to protect and preserve the growing social and economic benefits of cyber systems while ensuring security and privacy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是根据2021年《美国救援计划法》(公法117-2)全部或部分资助的。当今的计算机网络在复杂性和规模上都在增长,部分原因是对物联网,云3.0和大数据时代的连通性需求的响应。现有的网络管理解决方案无法跟上这些日益复杂的网络引起的实时网络管理问题的需求。网络管理需要一种从根本上进行新的方法,在该方法中,网络可以自主控制,配置和管理自己。尽管这些“自动驾驶网络”为有效的网络管理提供了许多机会,但它们引入了新的威胁和攻击向量,必须解决这些威胁和攻击媒介。不幸的是,目前有缺乏接受自主和智能网络安全培训的专业人员,以及培训这些专业人员的内容短缺。该项目将通过开发实验室密集型模块来解决这些短缺,从而使本科生能够在确保下一代自动驾驶网络方面获得基本和高级知识。项目团队将开发六个独立的模块,并全面覆盖保护自动驾驶网络所需的技术,工具和方法。这些模块将涵盖(1)攻击调查和分析遗产,软件定义的网络(SDN)和对抗攻击; (2)使用静态分析,软件组件分析,已知攻击模式和行为分析来寻找漏洞; (3)使用经典和开放流的方法收集网络范围的数据; (4)使用运行时应用程序自我保护,自动修补以及安全信息和事件管理的保护; (5)使用持续自适应风险和推力评估进行评估; (6)使用安全编排,自动化和响应采取行动。此外,该项目旨在通过组织研讨会和参加专业会议来增加代表性不足的STEM的参与。项目团队还将组织一个研讨会,将模块传播给其他组织有趣的教职员工。该项目得到了安全且可信赖的网络空间(SATC)计划的支持,该计划资助了针对网络安全和隐私性的建议,在这种情况下,在这种情况下是细胞安全性教育。 SATC计划与联邦网络安全研究与发展战略计划以及国家隐私研究战略保持一致,以保护和维护网络系统的不断增长的社会和经济利益,同时确保安全和隐私。该奖项反映了NSF的法定任务,并被认为是通过使用基金会的知识分子和更广泛影响的评估来审查Criteria来通过评估来通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sajad Khorsandroo其他文献
Sajad Khorsandroo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sajad Khorsandroo', 18)}}的其他基金
Excellence in Research: Cyber Threats Early Warning Framework for Operational Technology Systems
卓越研究:运营技术系统的网络威胁预警框架
- 批准号:
2200538 - 财政年份:2022
- 资助金额:
$ 17.35万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 17.35万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 17.35万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 17.35万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 17.35万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 17.35万 - 项目类别:
Continuing Grant