Exploiting excitons in atomic monolayers for dielectric sensing
利用原子单层中的激子进行介电传感
基本信息
- 批准号:2114535
- 负责人:
- 金额:$ 44.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical description: Many crystals including semiconductors are made of weakly bonded layers, and as such, can be separated into stable units of atomic thickness. Electrons (negatively charged particles) and holes (positively charged particles) in these isolated atomic membranes are bound by strong attractions to form excitons. Excitons are hydrogen atom-like particles; they possess a series of quantum states and display characteristic peaks in the absorption spectrum. On the other hand, excitons are much larger than hydrogen atoms; while the electrons and holes are confined in the atomic membrane, their interactions extend substantially outside. This property endows the excitons--both the energy and the intensity of the absorption peaks--with extreme sensitivity to surroundings. When a membrane is placed near a metal, the electron-hole interactions are significantly screened; and the exciton absorption spectrum is substantially altered. Conversely, a nearby insulator affects the exciton spectrum much less. In this project, the research team exploits this unique property of excitons in atomic membranes to develop a new sensing technique that can be applied to a wide range of materials including those that are inaccessible by conventional techniques. The team applies the technique to probe new forms of insulators and superconductors in two dimensions. The project supports the research and development of one graduate student and several undergraduate students. Other activities involve modernizing the physics advanced laboratory course at Cornell University and developing materials for outreach activities, including several science, technology, engineering, and mathematics (STEM) programs on campus that specifically target young girls.Technical description: Atomically thin transition metal dichalcogenide semiconductors have emerged as a new platform for strong light-matter interactions. The optical response of monolayers is dominated by excitons (bound electron-hole pairs), which are extremely sensitive to the surrounding dielectric environment because most of the electric-field lines responsible for exciton binding are outside the monolayer material. The project exploits this unique property of excitons in monolayer semiconductors to develop a new optical sensing technique for dielectric function or electronic compressibility of nanoscale materials. The goals are to develop imaging and time-resolved measurement capabilities, as well as a comprehensive understanding of the technique, its applicability and limitations. Two experiments are selected to focus on each of the measurement capabilities. The first experiment studies the sensitivity of the technique to the quantum Hall effect in graphene and explores the possibility of imaging the chiral edge states in the quantum Hall regime. The second experiment investigates the sensitivity of the technique to superconducting transitions and explores ultrafast dynamics of two-dimensional superconductors following photon-excitations. The methods involve the fabrication of van der Waals heterostructures and devices and optical spectroscopies, including the reflection contrast, hyper-spectral imaging and pump-probe spectroscopy. The new sensing technique can be applied to a wide range of materials including those that do not form good electrical contacts for conventional capacitance or transport measurements. It opens up unprecedented opportunities for studies of quantum many-body dynamics in correlated materials, topological chiral edge states, and two-dimensional superconductors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性描述:包括半导体在内的许多晶体都是由弱键合层组成的,因此可以分离成原子厚度的稳定单元。在这些孤立的原子膜中的电子(带负电荷的粒子)和空穴(带正电荷的粒子)被强吸引力结合形成激子。激子是类似氢原子的粒子;它们具有一系列量子态,并在吸收光谱中显示特征峰。另一方面,激子比氢原子大得多;虽然电子和空穴被限制在原子膜中,但它们的相互作用基本上延伸到外面。这种性质赋予激子-吸收峰的能量和强度-对环境的极端敏感性。当膜被放置在金属附近时,电子-空穴相互作用被显著屏蔽;并且激子吸收光谱被显著改变。相反,附近的绝缘体对激子光谱的影响要小得多。在这个项目中,研究小组利用原子膜中激子的这种独特性质开发了一种新的传感技术,可以应用于各种材料,包括那些传统技术无法达到的材料。该团队将该技术应用于探测二维绝缘体和超导体的新形式。该项目支持一名研究生和几名本科生的研究和开发。其他活动包括现代化康奈尔大学的物理高级实验室课程,并为外联活动开发材料,包括专门针对年轻女孩的校园科学,技术,工程和数学(STEM)课程。技术描述:原子薄过渡金属二硫属化物半导体已经成为强轻物质相互作用的新平台。单分子膜的光学响应主要由激子(束缚电子-空穴对)控制,激子对周围的介电环境非常敏感,因为负责激子束缚的大部分电场线都在单分子膜材料之外。该项目利用单层半导体中激子的这种独特性质,开发了一种新的光学传感技术,用于纳米材料的介电功能或电子压缩性。目标是开发成像和时间分辨测量能力,以及对该技术、其适用性和局限性的全面了解。选择两个实验来关注每个测量能力。第一个实验研究了该技术对石墨烯中量子霍尔效应的敏感性,并探索了在量子霍尔机制中成像手性边缘态的可能性。第二个实验研究了该技术对超导转变的敏感性,并探索了光子激发后二维超导体的超快动力学。这些方法涉及货车德瓦耳斯异质结构和器件的制备以及光谱学,包括反射衬度、超光谱成像和泵浦-探测光谱学。新的传感技术可以应用于各种材料,包括那些不形成良好的电接触的传统电容或传输测量。它为相关材料、拓扑手性边缘态和二维超导体中的量子多体动力学研究开辟了前所未有的机会。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A tunable bilayer Hubbard model in twisted WSe2
- DOI:10.1038/s41565-022-01180-7
- 发表时间:2022-02
- 期刊:
- 影响因子:38.3
- 作者:Yang Xu;Kaifei Kang;Kenji Watanabe;T. Taniguchi;K. Mak;J. Shan
- 通讯作者:Yang Xu;Kaifei Kang;Kenji Watanabe;T. Taniguchi;K. Mak;J. Shan
Optical readout of the chemical potential of two-dimensional electrons
- DOI:10.1038/s41566-024-01377-3
- 发表时间:2023-04
- 期刊:
- 影响因子:35
- 作者:Zhengchao Xia;Y. Zeng;B. Shen;Roei Dery;Kenji Watanabe;T. Taniguchi;J. Shan;K. Mak
- 通讯作者:Zhengchao Xia;Y. Zeng;B. Shen;Roei Dery;Kenji Watanabe;T. Taniguchi;J. Shan;K. Mak
Remote imprinting of moiré lattices
莫尔晶格的远程压印
- DOI:10.1038/s41563-023-01709-8
- 发表时间:2024
- 期刊:
- 影响因子:41.2
- 作者:Gu, Jie;Zhu, Jiacheng;Knuppel, Patrick;Watanabe, Kenji;Taniguchi, Takashi;Shan, Jie;Mak, Kin Fai
- 通讯作者:Mak, Kin Fai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jie Shan其他文献
MSNet: Multi-Scale Convolutional Network for Point Cloud Classification
MSNet:用于点云分类的多尺度卷积网络
- DOI:
10.3390/rs10040612 - 发表时间:
2018-04 - 期刊:
- 影响因子:5
- 作者:
Lei Wang;Yuchun Huang;Jie Shan - 通讯作者:
Jie Shan
Application of Natural Language Processing-based Emotional Semantic Analysis in the “One Core, Three Integrations” Vocal Music Teaching Model
基于自然语言处理的情感语义分析在“一核三融合”声乐教学模式中的应用
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.1
- 作者:
Jie Shan - 通讯作者:
Jie Shan
MnGA with multiple enzyme-like properties for acute wound healing by reducing oxidative stress and modulating signaling pathways
具有多种类酶特性的 MnGA 通过减轻氧化应激和调节信号通路促进急性伤口愈合
- DOI:
10.1016/j.mtbio.2024.101435 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:10.200
- 作者:
Xueting Guo;Wenqi Wang;Liting Lin;Jie Shan;Junyao Zhu;Shipeng Ning;Hanmei Li;Xianwen Wang;Decheng Lu - 通讯作者:
Decheng Lu
Light–valley interactions in 2D semiconductors
二维半导体中的光谷相互作用
- DOI:
10.1038/s41566-018-0204-6 - 发表时间:
2018-07-27 - 期刊:
- 影响因子:32.900
- 作者:
Kin Fai Mak;Di Xiao;Jie Shan - 通讯作者:
Jie Shan
Statistical analysis on the evolution of OpenStreetMap road networks in Beijing
北京市OpenStreetMap路网演化统计分析
- DOI:
10.1016/j.physa.2014.10.076 - 发表时间:
2015-02 - 期刊:
- 影响因子:0
- 作者:
Tao Jia;Kun Qin;Jie Shan;Chenjing Jiao - 通讯作者:
Chenjing Jiao
Jie Shan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jie Shan', 18)}}的其他基金
Investigating many-body states of interlayer excitons in 2D atomic double layers
研究二维原子双层中层间激子的多体态
- 批准号:
2004451 - 财政年份:2020
- 资助金额:
$ 44.62万 - 项目类别:
Continuing Grant
Exploring 2D Van der Waals Heterostructures with Layered Magnets for Valley-Based Electronics and Optoelectronics
探索用于谷基电子和光电子学的具有层状磁体的二维范德华异质结构
- 批准号:
1807810 - 财政年份:2018
- 资助金额:
$ 44.62万 - 项目类别:
Standard Grant
Collaborative Research: GOALI: Graphene THz/IR Optics: Fundamentals and Emerging Photonics Applications
合作研究:GOALI:石墨烯太赫兹/红外光学:基础知识和新兴光子学应用
- 批准号:
1410407 - 财政年份:2014
- 资助金额:
$ 44.62万 - 项目类别:
Standard Grant
Carrier Dynamics and Charge Transport in Novel Electronic Materials
新型电子材料中的载流子动力学和电荷传输
- 批准号:
0907477 - 财政年份:2009
- 资助金额:
$ 44.62万 - 项目类别:
Continuing Grant
CAREER: Probing Charge Transport by Terahertz Time-Domain Spectroscopy
职业:通过太赫兹时域光谱探测电荷传输
- 批准号:
0349201 - 财政年份:2004
- 资助金额:
$ 44.62万 - 项目类别:
Continuing Grant
IMR: Acquisition of Tunable Ultrafast Light Source for Materials Research and Student Training
IMR:采购可调谐超快光源用于材料研究和学生培训
- 批准号:
0415896 - 财政年份:2004
- 资助金额:
$ 44.62万 - 项目类别:
Standard Grant
相似海外基金
Electric and optical manipulation of 2D excitons for room temperature polariton blockade and valley qubits
用于室温极化子封锁和谷量子位的二维激子的电和光操纵
- 批准号:
EP/Y021789/1 - 财政年份:2024
- 资助金额:
$ 44.62万 - 项目类别:
Research Grant
Electric and optical manipulation of 2D excitons for room temperature polariton blockade and valley qubits
用于室温极化子封锁和谷量子位的二维激子的电和光操纵
- 批准号:
EP/Y021339/1 - 财政年份:2024
- 资助金额:
$ 44.62万 - 项目类别:
Research Grant
CAREER: Correlated Excitons in Semiconducting Moire Superlattices
职业:半导体莫尔超晶格中的相关激子
- 批准号:
2337606 - 财政年份:2024
- 资助金额:
$ 44.62万 - 项目类别:
Continuing Grant
Cross-correlated optical responses of magnetic excitons in atomic-layer magnetoelectrics
原子层磁电中磁激子的互相关光学响应
- 批准号:
24K17019 - 财政年份:2024
- 资助金额:
$ 44.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Imaging trions and their dynamics in momentum space
动量空间中的三重子及其动力学成像
- 批准号:
23H01110 - 财政年份:2023
- 资助金额:
$ 44.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Nonlinear quantum optics using Rydberg excitons
使用里德堡激子的非线性量子光学
- 批准号:
2887904 - 财政年份:2023
- 资助金额:
$ 44.62万 - 项目类别:
Studentship
Electrically driven plasmonic light emitters strongly coupled to excitons and dielectric resonators
与激子和介电谐振器强耦合的电驱动等离子体发光体
- 批准号:
2309941 - 财政年份:2023
- 资助金额:
$ 44.62万 - 项目类别:
Standard Grant
Hybrid Quantum System of Excitons and Superconductors
激子和超导体的混合量子系统
- 批准号:
EP/X038556/1 - 财政年份:2023
- 资助金额:
$ 44.62万 - 项目类别:
Research Grant
Hybrid Quantum System of Excitons and Superconductors
激子和超导体的混合量子系统
- 批准号:
EP/X03853X/1 - 财政年份:2023
- 资助金额:
$ 44.62万 - 项目类别:
Research Grant
Spin-Exchange and Energy Transfer at Hybrid Molecular/Lanthanide Nanoparticle Interfaces to Control Triplet Excitons
混合分子/稀土纳米颗粒界面的自旋交换和能量转移控制三重态激子
- 批准号:
EP/Y015584/1 - 财政年份:2023
- 资助金额:
$ 44.62万 - 项目类别:
Research Grant