Research Initiation Award: Uncertainty Modeling, Probabilistic Models, and Life-cycle Reliability of Floating Offshore Wind Turbines
研究启动奖:浮动海上风力发电机的不确定性建模、概率模型和生命周期可靠性
基本信息
- 批准号:2118586
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Research Initiation Awards provide support for faculty at Historically Black Colleges and Universities who are building a research program. It is expected that the award helps to further the faculty member's research capability and effectiveness, improves research and teaching at her home institution, and involves undergraduate students in research experiences. The award to Prairie View A&M University has potential broader and societal impact in a number of areas. Floating offshore wind turbines (FOWTs) have been considered as one of the most promising alternatives to access energy resources with vast available space and fewer restrictions and regulations. The project seeks to analyze floating offshore wind turbine uncertainties that arise due to the ocean environment and hydrodynamic calculations, as well as due to uncertainties in the structural and mechanical systems, which threaten the reliability and the feasibility of FOWTs. Undergraduate students, high school students and students from community colleges will gain research experiences through this project. The current floating offshore wind turbine technologies have challenges to be resolved in order to produce sustainable and cost-effective power. Semi-submersible type FOWTs are known to be one of the most promising options with construction and maintenance cost problems yet to be solved. This project focuses on identification of the uncertainties and on estimating the structural safety factors. The research objectives of this project are to: understand the uncertainties that exist in FOWTs; predict the structural behavior and life-cycle structural reliability of FOWTs; and obtain safety factors for structural design of semi-submersible-type FOWTs that uniquely consider the uncertainties and coupled dynamics of aerodynamics of the wind turbine and hydrodynamics of the floating body under extreme environmental loads. By considering the uncertainties found, the probabilistic capacity and demand models for structural components of FOWTs will be developed using a Bayesian Method. Lastly, the developed models will be used to estimate the life-cycle structural reliability and to obtain the safety factors for the base tower moment and shear forces of FOWTs. The results of this research may eventually reduce the current challenge of the high cost of FOWTs.
研究启动奖为历史上黑人学院和大学正在建立研究项目的教师提供支持。预计该奖项有助于提高教师的研究能力和效率,改善其所在机构的研究和教学,并让本科生参与研究经验。 Prairie View A&M 大学获得的奖项在许多领域都具有潜在的更广泛的社会影响。浮动式海上风力涡轮机(FOWT)被认为是获取能源最有前途的替代方案之一,具有广阔的可用空间和较少的限制和法规。该项目旨在分析由于海洋环境和水动力计算以及结构和机械系统的不确定性而产生的浮动海上风力发电机的不确定性,这些不确定性威胁着FOWT的可靠性和可行性。本科生、高中生和社区学院的学生将通过这个项目获得研究经验。当前的浮动式海上风力涡轮机技术需要解决一些挑战,才能产生可持续且具有成本效益的电力。众所周知,半潜式 FOWT 是最有前途的选择之一,但施工和维护成本问题尚未解决。该项目的重点是识别不确定性并估计结构安全系数。该项目的研究目标是:了解 FOWT 中存在的不确定性;预测 FOWT 的结构行为和生命周期结构可靠性; 独特地考虑极端环境载荷下风力机空气动力学和浮体流体动力学的不确定性和耦合动力学,获得半潜式FOWT结构设计的安全系数。通过考虑发现的不确定性,将使用贝叶斯方法开发 FOWT 结构部件的概率容量和需求模型。最后,开发的模型将用于估计生命周期结构可靠性,并获得 FOWT 的基塔力矩和剪力的安全系数。这项研究的结果可能最终会减少当前 FOWT 高成本的挑战。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncertainty models for the structural design of floating offshore wind turbines: A review
- DOI:10.1016/j.rser.2023.113610
- 发表时间:2023-10
- 期刊:
- 影响因子:15.9
- 作者:M. Ramezani;D. Choe;Khashayar Heydarpour;Bonjun Koo
- 通讯作者:M. Ramezani;D. Choe;Khashayar Heydarpour;Bonjun Koo
Prediction of Wind Speed, Potential Wind Power, and the Associated Uncertainties for Offshore Wind Farm Using Deep Learning
使用深度学习预测海上风电场的风速、潜在风力和相关不确定性
- DOI:10.1115/power2020-16557
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Choe, Do-Eun;Talor, Gary;Kim, Changkyu
- 通讯作者:Kim, Changkyu
Sequence-based modeling of deep learning with LSTM and GRU networks for structural damage detection of floating offshore wind turbine blades
- DOI:10.1016/j.renene.2021.04.025
- 发表时间:2021-04-30
- 期刊:
- 影响因子:8.7
- 作者:Choe, Do-Eun;Kim, Hyoung-Chul;Kim, Moo-Hyun
- 通讯作者:Kim, Moo-Hyun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Doeun Choe其他文献
Doeun Choe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Doeun Choe', 18)}}的其他基金
Research Initiation Award: Uncertainty Modeling, Probabilistic Models, and Life-cycle Reliability of Floating Offshore Wind Turbines
研究启动奖:浮动海上风力发电机的不确定性建模、概率模型和生命周期可靠性
- 批准号:
1700406 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Research Initiation Award: Integrated Approach Toward Examining Fecal Indicator Bacteria Trends in a Coastal Watershed
研究启动奖:检查沿海流域粪便指示细菌趋势的综合方法
- 批准号:
2300319 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Research Initiation Award: Turan-type problems on partially ordered sets
研究启动奖:偏序集上的图兰型问题
- 批准号:
2247163 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Research Initiation Award: A GNN+BiMCLSTM Based Framework to Model, Predict, and Traceback Malware Strains
研究启动奖:基于 GNN BiMCLSTM 的框架,用于建模、预测和追溯恶意软件菌株
- 批准号:
2300405 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Research Initiation Award: Uncovering and Extracting Biological Information from Nanopore Long-read Sequencing Data with Machine Learning and Mathematical Approaches
研究启动奖:利用机器学习和数学方法从纳米孔长读长测序数据中发现和提取生物信息
- 批准号:
2300445 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Research Initiation Award: Highly Stable Nanoparticle-Doped Metal-Organic Frameworks for Applications in Water Purification
研究启动奖:用于水净化应用的高度稳定的纳米颗粒掺杂金属有机框架
- 批准号:
2344742 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Research Initiation Award: Implementing the Next-Generation IoT Ecosystem with AI Capabilities
研究启动奖:利用人工智能能力实施下一代物联网生态系统
- 批准号:
2200377 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Research Initiation Award: Thermal Decomposition of Four-membered Heterocyclic Peroxides, Data Mining in Nonadiabatic Trajectories, and Chemiexcitation Efficiency
研究启动奖:四元杂环过氧化物的热分解、非绝热轨迹数据挖掘、化学激发效率
- 批准号:
2300321 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Research Initiation Award: Analysis of Glycoprotein Composition and Function of PGE2 EP Receptors in Mammary-derived Cells
研究启动奖:乳腺细胞中 PGE2 EP 受体的糖蛋白组成和功能分析
- 批准号:
2300448 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Research Initiation Award: Investigating Instructional Conditions for Robust Learning in Biology
研究启动奖:研究生物学稳健学习的教学条件
- 批准号:
2300454 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Research Initiation Award: Exploring Class A G-Protein Coupled Receptors (GPCRs)-Ligand Interaction through Machine Learning Approaches
研究启动奖:通过机器学习方法探索 A 类 G 蛋白偶联受体 (GPCR)-配体相互作用
- 批准号:
2300475 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant