RII Track 2 FEC: Enabling Factory to Factory (F2F) Networking for Future Manufacturing
RII Track 2 FEC:为未来制造实现工厂到工厂 (F2F) 网络
基本信息
- 批准号:2119654
- 负责人:
- 金额:$ 383.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Cooperative Agreement
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Cyber infrastructure and artificial intelligence (AI) are core components of smart manufacturing in South Carolina (SC), West Virginia (WV), and the United States. To drive radical transformation of industry, factories must securely expand beyond their physical boundaries. These Future Factories (FF) consume and create interdisciplinary knowledge along with the ability to forge innovative technological transformations. This project introduces a novel future cyber-manufacturing paradigm – the Factory-to-Factory (F2F) network framework. Geared towards automation, F2F networks require interoperability of stakeholders and efficient understanding systems for data, information, and knowledge. This collaboration between academia – led by the University of South Carolina and West Virginia University - and industry will produce advanced smart manufacturing technologies and an educated upskilled workforce in SC and WV. Furthermore, it will create a blueprint model for future manufacturing technologies that can be integrated with a F2F network to increase small-scale and industrial manufacturing capabilities across the US. To expand our workforce infrastructure, we will establish a lifelong learning pipeline for smart manufacturing ranging from K-12 education, higher education, to professional development support for scholars and industrial professionals. Particularly, we will create online learning resources and STEM-oriented smart manufacturing summer programs for K-12 students and provide internships for college and graduate students through our industrial partners. This project will adapt, enhance, and integrate informational technologies (IT) and operational technologies (OT) such as real-time secured sensing, high performance computing, wireless communications, and AI, to support process optimization among distributed smart manufacturing systems for F2F. Convergence and true progress can only be achieved by fusing expert knowledge of manufacturing processes with newly emerged hardware and software technologies. The project focuses on manufacturing knowledge stemming from: (1) autonomous feature extraction and recognition from product ‘manufacturing DNAs’ as a novel manufacturing knowledge representation among distributed systems, (2) architecture of interactive cyber spaces that combines cross-platform simulation results within product lifecycles, (3) data-driven control theories during process monitoring leading to rapid autonomous decision-making in replacement of manual input/output modules, and (4) robust business models and operations research (information service-oriented) concerning autonomous Key Performance Indicator (KPI) decomposition among distributed sub-systems and rapid feedback control loops. This will build a foundation for real-time production information sharing and control platforms and facilitate manufacturing knowledge generation and utilization among networked systems to address manufacturing management challenges. Furthermore, it enables human interventions and interoperations in the development and decision-making process of these highly collaborative networked smart manufacturing systems. This project will showcase several novel cyber manufacturing implementations and establish a roadmap towards a universal digital F2F standard.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络基础设施和人工智能(AI)是南卡罗来纳州(SC)、西弗吉尼亚州(WV)和美国智能制造的核心组成部分。为了推动工业的彻底转型,工厂必须安全地扩展到物理边界之外。这些未来工厂(FF)消耗和创造跨学科的知识,同时有能力进行创新的技术变革。本项目介绍了一种新型的未来网络制造范式——工厂到工厂(F2F)网络框架。面向自动化,F2F网络需要利益相关者的互操作性和有效的数据、信息和知识理解系统。由南卡罗来纳大学和西弗吉尼亚大学领导的学术界与工业界的合作将在南卡罗来纳州和西弗吉尼亚州生产先进的智能制造技术和受过良好教育的高技能劳动力。此外,它将为未来的制造技术创建一个蓝图模型,可以与F2F网络集成,以提高美国的小规模和工业制造能力。为了扩大劳动力基础设施,我们将建立智能制造的终身学习管道,从K-12教育到高等教育,再到为学者和工业专业人士提供专业发展支持。特别是,我们将为K-12学生创建在线学习资源和面向stem的智能制造暑期项目,并通过我们的工业合作伙伴为大学生和研究生提供实习机会。该项目将适应、增强和集成信息技术(IT)和操作技术(OT),如实时安全传感、高性能计算、无线通信和人工智能,以支持F2F分布式智能制造系统之间的流程优化。只有将制造工艺的专业知识与新出现的硬件和软件技术融合在一起,才能实现融合和真正的进步。该项目侧重于以下方面的制造知识:(1)从产品“制造dna”中自主提取和识别特征,作为分布式系统中新颖的制造知识表示;(2)结合产品生命周期内跨平台仿真结果的交互式网络空间体系结构;(3)过程监控期间的数据驱动控制理论,导致替代人工输入/输出模块的快速自主决策;(4)基于分布式子系统之间自主关键绩效指标(KPI)分解和快速反馈控制回路的稳健业务模型和运筹学(信息服务)。这将为实时生产信息共享和控制平台奠定基础,并促进网络化系统之间的制造知识生成和利用,以应对制造管理挑战。此外,它使这些高度协作的网络化智能制造系统的开发和决策过程中的人为干预和互操作成为可能。该项目将展示几种新颖的网络制造实施方案,并为通用数字F2F标准制定路线图。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Knowledge Graph Empowered Machine Learning Pipelines for Improved Efficiency, Reusability, and Explainability
知识图赋能机器学习管道,提高效率、可重用性和可解释性
- DOI:10.1109/mic.2022.3228087
- 发表时间:2023
- 期刊:
- 影响因子:3.2
- 作者:Venkataramanan, Revathy;Tripathy, Aalap;Foltin, Martin;Yip, Hong Yung;Justine, Annmary;Sheth, Amit
- 通讯作者:Sheth, Amit
Automated manufacturability analysis in smart manufacturing systems: a signature mapping method for product-centered digital twins
- DOI:10.1007/s10845-022-01991-4
- 发表时间:2022-08
- 期刊:
- 影响因子:8.3
- 作者:K. Xia;Thorsten Wuest;R. Harik
- 通讯作者:K. Xia;Thorsten Wuest;R. Harik
CausalKG: Causal Knowledge Graph Explainability Using Interventional and Counterfactual Reasoning
- DOI:10.1109/mic.2021.3133551
- 发表时间:2022-01
- 期刊:
- 影响因子:3.2
- 作者:Utkarshani Jaimini;A. Sheth
- 通讯作者:Utkarshani Jaimini;A. Sheth
A Semantic Web Approach to Fault Tolerant Autonomous Manufacturing
- DOI:10.1109/mis.2023.3235677
- 发表时间:2023-01
- 期刊:
- 影响因子:6.4
- 作者:Fadi El Kalach;Ruwan Wickramarachchi;R. Harik;A. Sheth
- 通讯作者:Fadi El Kalach;Ruwan Wickramarachchi;R. Harik;A. Sheth
Knowledge-Based Entity Prediction for Improved Machine Perception in Autonomous Systems
- DOI:10.1109/mis.2022.3181015
- 发表时间:2022-03
- 期刊:
- 影响因子:6.4
- 作者:Ruwan Wickramarachchi;C. Henson;A. Sheth
- 通讯作者:Ruwan Wickramarachchi;C. Henson;A. Sheth
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ramy Harik其他文献
Influence of process parameters in AFP fiber steering on cylinders: Constant curvature paths
- DOI:
10.1016/j.jcomc.2020.100036 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:
- 作者:
Roudy Wehbe;Christopher Sacco;Anis Baz Radwan;Mazen Albazzan;Ramy Harik - 通讯作者:
Ramy Harik
Cognitive manufacturing: definition and current trends
- DOI:
10.1007/s10845-024-02429-9 - 发表时间:
2024-06-20 - 期刊:
- 影响因子:7.400
- 作者:
Fadi El Kalach;Ibrahim Yousif;Thorsten Wuest;Amit Sheth;Ramy Harik - 通讯作者:
Ramy Harik
Time-series pattern recognition in Smart Manufacturing Systems: A literature review and ontology
智能制造系统中的时间序列模式识别:文献综述与本体论
- DOI:
10.1016/j.jmsy.2023.05.025 - 发表时间:
2023-08-01 - 期刊:
- 影响因子:14.200
- 作者:
Mojtaba A. Farahani;M.R. McCormick;Robert Gianinny;Frank Hudacheck;Ramy Harik;Zhichao Liu;Thorsten Wuest - 通讯作者:
Thorsten Wuest
Real-time defect detection and classification in robotic assembly lines: A machine learning framework
机器人装配线中的实时缺陷检测与分类:一个机器学习框架
- DOI:
10.1016/j.rcim.2025.103011 - 发表时间:
2025-10-01 - 期刊:
- 影响因子:11.400
- 作者:
Fadi El Kalach;Mojtaba Farahani;Thorsten Wuest;Ramy Harik - 通讯作者:
Ramy Harik
Leveraging the usage of blockchain toward trust-dominated manufacturing systems
利用区块链的使用走向以信任为主导的制造系统
- DOI:
10.1016/j.jmsy.2024.10.010 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:14.200
- 作者:
Philip Samaha;Fadi El Kalach;Ramy Harik - 通讯作者:
Ramy Harik
Ramy Harik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: RII Track-2 FEC: Rural Confluence: Communities and Academic Partners Uniting to Drive Discovery and Build Capacity for Climate Resilience
合作研究:RII Track-2 FEC:农村融合:社区和学术合作伙伴联合起来推动发现并建设气候适应能力的能力
- 批准号:
2316366 - 财政年份:2023
- 资助金额:
$ 383.23万 - 项目类别:
Cooperative Agreement
Collaborative Research: RII Track-2 FEC: Where We Live: Local and Place Based Adaptation to Climate Change in Underserved Rural Communities
合作研究:RII Track-2 FEC:我们居住的地方:服务不足的农村社区对气候变化的本地和地方适应
- 批准号:
2316128 - 财政年份:2023
- 资助金额:
$ 383.23万 - 项目类别:
Cooperative Agreement
Collaborative Research: RII Track-2 FEC: Where We Live: Local and Place Based Adaptation to Climate Change in Underserved Rural Communities
合作研究:RII Track-2 FEC:我们居住的地方:服务不足的农村社区对气候变化的本地和地方适应
- 批准号:
2316126 - 财政年份:2023
- 资助金额:
$ 383.23万 - 项目类别:
Cooperative Agreement
RII Track-2 FEC: Community-Driven Coastal Climate Research & Solutions for the Resilience of New England Coastal Populations
RII Track-2 FEC:社区驱动的沿海气候研究
- 批准号:
2316271 - 财政年份:2023
- 资助金额:
$ 383.23万 - 项目类别:
Cooperative Agreement
Collaborative Research: RII Track-2 FEC: Supporting rural livelihoods in the water-stressed Central High Plains: Microbial innovations for climate-resilient agriculture (MICRA)
合作研究:RII Track-2 FEC:支持缺水的中部高原地区的农村生计:气候适应型农业的微生物创新 (MICRA)
- 批准号:
2316296 - 财政年份:2023
- 资助金额:
$ 383.23万 - 项目类别:
Cooperative Agreement
Collaborative Research: RII Track-2 FEC: STORM: Data-Driven Approaches for Secure Electric Grids in Communities Disproportionately Impacted by Climate Change
合作研究:RII Track-2 FEC:STORM:受气候变化影响较大的社区中安全电网的数据驱动方法
- 批准号:
2316400 - 财政年份:2023
- 资助金额:
$ 383.23万 - 项目类别:
Cooperative Agreement
RII Track-2 FEC: Center for Climate Conscious Agricultural Technologies (CCAT)
RII Track-2 FEC:气候意识农业技术中心 (CCAT)
- 批准号:
2316502 - 财政年份:2023
- 资助金额:
$ 383.23万 - 项目类别:
Cooperative Agreement
Collaborative Research: RII Track-2 FEC: Promoting N2O- and CO2-Relieved Nitrogen Fertilizers for Climate Change-Threatened Midwest Farming and Ranching
合作研究:RII Track-2 FEC:为受气候变化威胁的中西部农业和牧场推广不含 N2O 和 CO2 的氮肥
- 批准号:
2316482 - 财政年份:2023
- 资助金额:
$ 383.23万 - 项目类别:
Cooperative Agreement
RII-Track 2 FEC: Advancing Social and Environmental Equity through Plastics Research: Education, Innovation, and Inclusion (ASPIRE)
RII-Track 2 FEC:通过塑料研究促进社会和环境公平:教育、创新和包容性 (ASPIRE)
- 批准号:
2316351 - 财政年份:2023
- 资助金额:
$ 383.23万 - 项目类别:
Cooperative Agreement
Collaborative Research: RII Track-2 FEC: Rural Confluence: Communities and Academic Partners Uniting to Drive Discovery and Build Capacity for Climate Resilience
合作研究:RII Track-2 FEC:农村融合:社区和学术合作伙伴联合起来推动发现并建设气候适应能力的能力
- 批准号:
2316367 - 财政年份:2023
- 资助金额:
$ 383.23万 - 项目类别:
Cooperative Agreement