Collaborative Research: Probing feedbacks between thermal structure, petrologic transformation, and rheologic evolution within dynamically evolving subduction zones
合作研究:探测动态演化俯冲带内的热结构、岩石学转变和流变演化之间的反馈
基本信息
- 批准号:2119843
- 负责人:
- 金额:$ 10.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Subduction zones – places where one tectonic plate sinks beneath another – are responsible for the generation of deadly earthquakes, explosive volcanoes, global chemical cycling into the deep earth, and tectonic plate movements. The thermal structure of a subduction zone (i.e., the temperature of different parts of the subduction zone at depth) exerts a first order control on the strength and mechanics of an individual subduction zone and also on what materials and volatiles (e.g., water) are transported down to the deep earth within subducting plates. Together, these temperature-dependent mechanical and chemical processes dictate the occurrence of subduction zone hazards such as earthquakes and volcanism. Thus, a longstanding goal of subduction research is a quantitative understanding of subduction zone thermal structure. Because these zones are 100s of km thick and 1000s of km long, we cannot directly measure their thermal structure. However, we can create detailed numerical simulations (subduction models) that predict thermal structure and allow us to investigate how it evolves and influences these mechanical and chemical processes. These models are guided by a broad range of tectonic observables in active subduction zones and by studies of subducted rocks that have been exhumed back to the surface. These data illuminate a range of thermal, chemical (petrological), and mechanical (rheological) feedbacks that operate over the lifetime of a subduction zone but are typically omitted from thermal subduction zone models. For instance, chemical reactions (e.g., metamorphism) in subducting plates are not only highly-temperature dependent, but also likely to affect the thermal structure of subduction zones. This is because different metamorphic rocks have different strengths and densities which, in turn, affect the subduction properties (convergence velocity between the two plates, dip angle of the subducting plate) that ultimately control subduction zone temperature. Motivated by these dynamic interactions, we will develop a suite of subduction models that directly incorporate these thermal-chemical-mechanical feedbacks. This modeling approach will allow us to probe how, and how rapidly, subduction zone thermal structure evolves, and also to characterize how this thermal variability impacts plate boundary strength and chemical cycling in these important tectonic zones. In addition to supporting undergraduate, graduate, and postdoctoral researchers, this project will also benefit society and the geoscience community through a combination of education, outreach, and scientific in-reach in the following ways: (1) we will develop an online lab activity for introductory geology classes to expose beginning geoscientists to computational methods, (2) we will host an in-reach subduction zone workshop at the University of Washington, and (3) we will reach out to the public by developing a digital exhibit on subduction zones at The Beneski Museum of Natural History (Amherst College).To capture dynamic and time-evolving subduction behavior for Earth’s range of subduction settings, we will fully integrate geodynamic, petrologic, and rheological components into our modeling framework. Petrologic modeling will reveal the loci of slab devolatilization and density transformations through time. A suite of experimentally and geologically constrained rheologies will be used to calculate the time-evolving crustal viscosity structure. Both components will be fully integrated into the geodynamic modeling component (i.e., a time-dependent subduction model) so that calculated petrological phases, densities, and viscosities are dictated by, and also affect, the thermal evolution of the geodynamic model. After iteratively increasing the complexity of models (so as to preserve physical intuition as the number of model components grow), we will run models for parameter combinations corresponding to each subduction system on Earth. This will enable us place bounds on the properties of Earth’s slabs (temperature, dehydration systematics, density, viscosity), in space and time, and address three targeted questions relating to the co-evolution of slab thermal structure, dehydration, and mechanical properties: What evolutionary phase of subduction is associated with the most water transport to the deep mantle? What is the mechanical control on the so-called “decoupling depth” at subduction zones? And, lastly, what is the dominant control on the bi-modal timing of subducted rock exhumation?This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
俯冲带--一个构造板块下沉到另一个构造板块之下的地方--是产生致命地震、爆发性火山、进入地球深部的全球化学循环和构造板块运动的原因。俯冲带的热结构(即,在深度处俯冲带的不同部分的温度)对单个俯冲带的强度和力学以及对什么材料和挥发物(例如,水)被向下输送到俯冲板块内的地球深处。这些与温度相关的机械和化学过程共同决定了俯冲带灾害的发生,如地震和火山活动。因此,俯冲研究的一个长期目标是对俯冲带热结构的定量了解。由于这些区域厚达数百公里,长达数千公里,我们无法直接测量它们的热结构。然而,我们可以创建详细的数值模拟(俯冲模型)来预测热结构,并使我们能够研究它如何演变和影响这些机械和化学过程。这些模型的指导下,广泛的构造观测活动俯冲带和研究的俯冲岩石已被挖出回表面。这些数据阐明了一系列的热,化学(岩石学),和机械(流变学)的反馈,在俯冲带的寿命,但通常从热俯冲带模型省略。例如,化学反应(例如,俯冲板块中的变质作用不仅与温度高度相关,而且可能影响俯冲带的热结构。这是因为不同的变质岩有不同的强度和密度,这反过来又影响了俯冲性质(两个板块之间的收敛速度,俯冲板块的倾角),最终控制俯冲带的温度。受这些动态相互作用的启发,我们将开发一套俯冲模型,直接将这些热化学机械反馈。这种建模方法将使我们能够探索俯冲带热结构的演变方式和速度,并描述这种热变化如何影响这些重要构造带的板块边界强度和化学循环。除了支持本科生,研究生和博士后研究人员外,该项目还将通过以下方式结合教育,推广和科学接触来造福社会和地球科学界:(1)我们将为地质学入门课程开发在线实验室活动,让初级地球科学家了解计算方法,(2)我们将在华盛顿大学举办一个“俯冲带”研讨会,以及(3)我们将通过在Beneski自然历史博物馆开发一个关于俯冲带的数字展览来接触公众(阿默斯特学院)。为了捕捉地球俯冲环境范围内的动态和随时间变化的俯冲行为,我们将把地球动力学、岩石学和流变学组件完全整合到我们的建模框架中。岩石学模拟将揭示板块挥发分和密度随时间变化的轨迹。一套实验和地质约束的流变学将被用来计算随时间变化的地壳粘度结构。这两个组成部分将完全纳入地球动力学建模组成部分(即,与时间相关的俯冲模型),从而计算的岩石学相、密度和粘度由地球动力学模型的热演化决定,并且也影响地球动力学模型的热演化。在迭代地增加模型的复杂性(以便随着模型组件数量的增加而保持物理直观性)之后,我们将运行与地球上每个俯冲系统相对应的参数组合模型。这将使我们能够在空间和时间上对地球板块的性质(温度,脱水系统学,密度,粘度)进行限制,并解决与板块热结构,脱水和机械性能的共同演化有关的三个有针对性的问题:什么样的俯冲演化阶段与最水运输到地幔深处?俯冲带中所谓的“退耦深度”的力学控制因素是什么?最后,俯冲岩石折返的双模态时间的主要控制因素是什么?该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The effects of plate interface rheology on subduction kinematics and dynamics
板块界面流变学对俯冲运动学和动力学的影响
- DOI:10.1093/gji/ggac075
- 发表时间:2022
- 期刊:
- 影响因子:2.8
- 作者:Behr, Whitney M;Holt, Adam F;Becker, Thorsten W;Faccenna, Claudio
- 通讯作者:Faccenna, Claudio
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor Guevara其他文献
Detection of Breast Cancer using Convolutional Neural Networks with Learning Transfer Mechanisms
使用具有学习迁移机制的卷积神经网络检测乳腺癌
- DOI:
10.14569/ijacsa.2023.0140661 - 发表时间:
2023 - 期刊:
- 影响因子:0.9
- 作者:
Victor Guevara;Ofelia Roque;Carlos Zerga;Andrea Flores;Mario Aymerich;Orlando Iparraguirre - 通讯作者:
Orlando Iparraguirre
Convolutional Neural Networks with Transfer Learning for Pneumonia Detection
用于肺炎检测的具有迁移学习的卷积神经网络
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0.9
- 作者:
Orlando Iparraguirre;Victor Guevara;Ofelia Roque Paredes;Fernando Sierra;Joselyn Zapata;M. Cabanillas - 通讯作者:
M. Cabanillas
Victor Guevara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victor Guevara', 18)}}的其他基金
Collaborative Research: Equipment: Acquisition of a Confocal Micro-Raman Spectroscopy System at the University of Massachusetts and Amherst College
合作研究:设备:在马萨诸塞大学和阿默斯特学院购买共焦显微拉曼光谱系统
- 批准号:
2225643 - 财政年份:2023
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
Collaborative Research: Resolving Conflicting Thermobarometry and Stratigraphy in the Tethyan Himalaya: is Non-lithostatic Pressure During Orogenesis Preserved at Crustal Scales?
合作研究:解决特提斯喜马拉雅地区温压测量和地层学的冲突:造山作用期间的非静压压力是否保留在地壳尺度?
- 批准号:
2210076 - 财政年份:2022
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Tectonic and Petrological Processes Controlling Iron Oxide-Apatite Mineralization in a Mesoproterozoic Collisional Orogen
合作研究:了解控制中元古代碰撞造山带氧化铁-磷灰石矿化的构造和岩石学过程
- 批准号:
2120412 - 财政年份:2021
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412550 - 财政年份:2024
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
Collaborative Research: Probing and Controlling Exciton-Plasmon Interaction for Solar Hydrogen Generation
合作研究:探测和控制太阳能制氢的激子-等离子体激元相互作用
- 批准号:
2230729 - 财政年份:2023
- 资助金额:
$ 10.6万 - 项目类别:
Continuing Grant
Collaborative Research: PM: High-Z Highly Charged Ions Probing Nuclear Charge Radii, QED, and the Standard Model
合作研究:PM:高阻抗高带电离子探测核电荷半径、QED 和标准模型
- 批准号:
2309273 - 财政年份:2023
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
Collaborative Research: ISS: Probing Interfacial Instabilities in Flow Boiling and Condensation via Acoustic Signatures in Microgravity
合作研究:ISS:通过微重力下的声学特征探测流动沸腾和冷凝中的界面不稳定性
- 批准号:
2323023 - 财政年份:2023
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
- 批准号:
2319142 - 财政年份:2023
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
Collaborative Research: ISS: Probing Interfacial Instabilities in Flow Boiling and Condensation via Acoustic Signatures in Microgravity
合作研究:ISS:通过微重力下的声学特征探测流动沸腾和冷凝中的界面不稳定性
- 批准号:
2323022 - 财政年份:2023
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
- 批准号:
2319144 - 财政年份:2023
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
Collaborative Research: RUI: PM:High-Z Highly Charged Ions Probing Nuclear Charge Radii, QED, and the Standard Model
合作研究:RUI:PM:高阻抗高带电离子探测核电荷半径、QED 和标准模型
- 批准号:
2309274 - 财政年份:2023
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
Collaborative Research: Probing and Controlling Exciton-Plasmon Interaction for Solar Hydrogen Generation
合作研究:探测和控制太阳能制氢的激子-等离子体激元相互作用
- 批准号:
2230891 - 财政年份:2023
- 资助金额:
$ 10.6万 - 项目类别:
Continuing Grant