Collaborative Research: Converging Design Methodology: Multi-objective Optimization of Resilient Structural Spines
合作研究:融合设计方法:弹性结构脊柱的多目标优化
基本信息
- 批准号:2120684
- 负责人:
- 金额:$ 25.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Post-earthquake reconstruction efforts in New Zealand, Chile, and Japan are motivating the development of novel, low damage lateral force resisting systems to minimize social disruptions and property damage. These efforts, combined with earthquake scenarios highlighting seismic risks to cities in the United States, have led U.S. agencies to focus on increasing urban resilience against future extreme events by defining performance goals in terms of post-earthquake re-occupancy and functional recovery metrics. In parallel, non-profit organizations are driving the use of more sustainable building materials and construction practices. This project will create a new design paradigm within structural engineering that employs multi-objective optimization to maximize post-earthquake functional recovery while integrating sustainable building practices into the design process. The new design paradigm will be applied to the design and construction of resilient mass timber structural systems. The novelty of mass timber construction and limited availability of codes and standards make it uniquely positioned to pioneer innovative structural systems and new design paradigms, such as incorporating multi-objective optimization. The unique design paradigm developed in this project is called "converging design," as the methodology will be better able to converge across competing life-safety, post-earthquake functional recovery, and environmental sustainability objectives. The research will be complemented by an outreach program that includes training of the next generation of industry and academic leaders and fosters increased partnerships among academia, industry, building code officials, and government agencies. In addition, the research will lead to several undergraduate student experiences in STEM through an institutional Research and Extension Experiences for Undergraduate Student program and collaborations with NSF-funded Research Experiences for Undergraduates sites. This project will support the National Science Foundation (NSF) role in the National Earthquake Hazards Reduction Program. The goal of this project is to integrate functionality-based design and multi-objective optimization into a single converging design paradigm that will support resilient, sustainable seismic solutions for lateral force resisting systems. The project will integrate existing and new data from laboratory and numerical work to (1) define functional recovery and sustainability metrics, including quantification of uncertainty, for the design of innovative lateral force resisting systems employing mass timber spine solutions; (2) create and implement a multi-objective optimization converging seismic design methodology that considers resiliency and sustainability goals; and (3) develop optimized seismic lateral force resisting systems, whose performance is validated through a six-story full-scale building test program at the NSF-supported Natural Hazards Engineering Research Infrastructure (NHERI) outdoor shake table at the University of California, San Diego (UCSD). The six-story specimen re-uses an existing ten-story shake table specimen that will be tested on the UCSD shake table in 2021/2022. A series of expert elicitation interviews and participatory workshops will support the definition of resiliency metrics, including time to functionality and sustainability metrics (e.g., embodied carbon) to meet the goal of the research. Educational modules for industry and higher education will be created. An industry working group will promote increased collaboration and foster innovation among academia, industry, and government agencies. This project will lead to new seismic design possibilities and advance knowledge of the functionality and sustainability of mass timber structures based on decades of research in seismic design, advances in high-performance computing that support optimization in design, and functional-recovery modeling, including sustainability goals. Project data will be archived and made publicly available in the NHERI Data Depot (https://www.designsafe-ci.org).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新西兰、智利和日本的震后重建工作正在推动新型、低损伤抗侧向力系统的开发,以最大限度地减少社会破坏和财产损失。这些努力,加上地震情景突出了美国城市的地震风险,导致美国机构专注于通过定义震后重新入住和功能恢复指标的绩效目标来提高城市对未来极端事件的抵御能力。与此同时,非营利组织正在推动使用更可持续的建筑材料和建筑实践。该项目将在结构工程中创造一种新的设计范式,采用多目标优化,最大限度地提高震后功能恢复,同时将可持续建筑实践融入设计过程。新的设计范式将应用于弹性质量木结构系统的设计和施工。大规模木结构的新奇以及规范和标准的有限性使其在开拓创新结构系统和新的设计范式方面处于独特的地位,例如结合多目标优化。该项目开发的独特设计范例被称为“融合设计”,因为该方法将能够更好地融合相互竞争的生命安全、震后功能恢复和环境可持续性目标。该研究将得到一个推广计划的补充,该计划包括培训下一代行业和学术领袖,并促进学术界,行业,建筑规范官员和政府机构之间的伙伴关系。此外,该研究将通过本科生项目的机构研究和扩展经验以及与NSF资助的本科生研究经验网站的合作,为几名本科生带来STEM方面的经验。该项目将支持美国国家科学基金会(NSF)在国家减少地震灾害计划中的作用。 该项目的目标是将基于功能的设计和多目标优化集成到一个单一的融合设计范式中,该范式将支持抗侧向力系统的弹性,可持续的抗震解决方案。该项目将整合来自实验室和数值工作的现有和新数据,以(1)定义功能恢复和可持续性指标,包括量化不确定性,用于采用大规模木材脊柱解决方案的创新横向力抵抗系统的设计;(2)创建并实施多目标优化融合抗震设计方法,考虑弹性和可持续性目标;以及(3)开发优化的地震侧向力抵抗系统,其性能通过在加州大学圣地亚哥分校(UCSD)的NSF支持的自然灾害工程研究基础设施(NHERI)室外振动台上的六层全尺寸建筑测试程序进行验证。六层楼的样本重新使用了现有的十层振动台样本,该样本将于2021/2022年在UCSD振动台上进行测试。一系列专家启发式访谈和参与式研讨会将支持弹性指标的定义,包括功能时间和可持续性指标(例如,碳(carbon),以达到研究的目的。将为工业和高等教育创建教育模块。一个行业工作组将促进学术界、工业界和政府机构之间加强合作,促进创新。该项目将带来新的抗震设计可能性,并基于数十年的抗震设计研究,支持设计优化的高性能计算的进步,以及功能恢复建模,包括可持续性目标,推进对大规模木结构的功能和可持续性的认识。项目数据将在NHERI数据库(https://www.example.com)中存档并公开提供。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。www.designsafe-ci.org
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparing optimization approaches in the direct displacement-based design of tall mass timber lateral systems
高层木横向系统基于直接位移设计的优化方法比较
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zargar, Seyed Hossein;Uarac, Patricio;Barbosa, Andre R.;Sinha, Arijit;Simpson, Barbara;van de Lindt, John W.;Brown, Nathan C.
- 通讯作者:Brown, Nathan C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathan Brown其他文献
Ultra-black coatings for space instruments: A comparison of traditional Ebonol C processes and a method for future repeatability
用于太空仪器的超黑涂层:传统 Ebonol C 工艺与未来可重复性方法的比较
- DOI:
10.1016/j.jmapro.2024.01.057 - 发表时间:
2024-03-15 - 期刊:
- 影响因子:6.800
- 作者:
Daniel E. Hooks;Bradley Carpenter;Micah Hickethier;Courtney Clark;Nathan Brown;Michael McBride;Ilker Loza-Hernandez;Jamie A. Stull;Carlos A. Maldonado - 通讯作者:
Carlos A. Maldonado
Relationship between High School STEM Self-Competency and
Behavior in a Parametric Building Design Activity
高中 STEM 自我能力与参数化建筑设计活动中行为的关系
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Stephanie Bunt;Laura Hinkle;Andrew Walton;Nathan Brown - 通讯作者:
Nathan Brown
Novel dendrochronological modelling demonstrates that decades of reduced stem growth predispose trees to Acute Oak Decline
- DOI:
10.1016/j.foreco.2020.118441 - 发表时间:
2020-11-15 - 期刊:
- 影响因子:
- 作者:
Katy Reed;Jack Forster;Sandra Denman;Nathan Brown;Simon R. Leather;Daegan J.G. Inward - 通讯作者:
Daegan J.G. Inward
Permafrost Formation in a Meandering River Floodplain
蜿蜒河漫滩中的永久冻土层
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:8.4
- 作者:
M. Douglas;Gen K. Li;A. J. West;Y. Ke;J. Rowland;Nathan Brown;J. Schwenk;P. Kemeny;A. Piliouras;Woodward W. Fischer;Michael P. Lamb - 通讯作者:
Michael P. Lamb
Artificial intelligence in chemistry and drug design
- DOI:
10.1007/s10822-020-00317-x - 发表时间:
2020-05-29 - 期刊:
- 影响因子:3.100
- 作者:
Nathan Brown;Peter Ertl;Richard Lewis;Torsten Luksch;Daniel Reker;Nadine Schneider - 通讯作者:
Nadine Schneider
Nathan Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathan Brown', 18)}}的其他基金
TS: The University of Texas at Arlington Luminescence Laboratory
TS:德克萨斯大学阿灵顿发光实验室
- 批准号:
2350175 - 财政年份:2024
- 资助金额:
$ 25.99万 - 项目类别:
Continuing Grant
Quantifying long-term aeolian abrasion rates on hard rock surfaces
量化硬岩表面的长期风蚀率
- 批准号:
2314628 - 财政年份:2024
- 资助金额:
$ 25.99万 - 项目类别:
Standard Grant
Characterizing Expert Behavior During Interactive Parametric Building Design
描述交互式参数化建筑设计过程中专家行为的特征
- 批准号:
2033332 - 财政年份:2021
- 资助金额:
$ 25.99万 - 项目类别:
Standard Grant
EAR-PF: Using noble gas techniques to benchmark feldspar thermoluminescence (TL) thermochronology
EAR-PF:使用惰性气体技术对长石热释光 (TL) 热年代学进行基准测试
- 批准号:
1806629 - 财政年份:2019
- 资助金额:
$ 25.99万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Converging Design Methodology: Multi-objective Optimization of Resilient Structural Spines
合作研究:融合设计方法:弹性结构脊柱的多目标优化
- 批准号:
2120683 - 财政年份:2021
- 资助金额:
$ 25.99万 - 项目类别:
Standard Grant
Collaborative Research: Converging Design Methodology: Multi-objective Optimization of Resilient Structural Spines
合作研究:融合设计方法:弹性结构脊柱的多目标优化
- 批准号:
2120692 - 财政年份:2021
- 资助金额:
$ 25.99万 - 项目类别:
Standard Grant
Collaborative Research: Converging COVID-19, environment, health, and equity
合作研究:融合 COVID-19、环境、健康和公平
- 批准号:
2037862 - 财政年份:2020
- 资助金额:
$ 25.99万 - 项目类别:
Standard Grant
Collaborative Research: Converging COVID-19, environment, health, and equity
合作研究:融合 COVID-19、环境、健康和公平
- 批准号:
2037834 - 财政年份:2020
- 资助金额:
$ 25.99万 - 项目类别:
Standard Grant
Collaborative Research: Converging Genomics, Phenomics, and Environments Using Interpretable Machine Learning Models
协作研究:使用可解释的机器学习模型融合基因组学、表型组学和环境
- 批准号:
1940062 - 财政年份:2019
- 资助金额:
$ 25.99万 - 项目类别:
Continuing Grant
Collaborative Research: Converging Genomics, Phenomics, and Environments Using Interpretable Machine Learning Models
协作研究:使用可解释的机器学习模型融合基因组学、表型组学和环境
- 批准号:
1940330 - 财政年份:2019
- 资助金额:
$ 25.99万 - 项目类别:
Continuing Grant
Collaborative Research: Converging Genomics, Phenomics, and Environments Using Interpretable Machine Learning Models
协作研究:使用可解释的机器学习模型融合基因组学、表型组学和环境
- 批准号:
1940059 - 财政年份:2019
- 资助金额:
$ 25.99万 - 项目类别:
Continuing Grant
Collaborative Research: Converging Genomics, Phenomics, and Environments Using Interpretable Machine Learning Models
协作研究:使用可解释的机器学习模型融合基因组学、表型组学和环境
- 批准号:
1939945 - 财政年份:2019
- 资助金额:
$ 25.99万 - 项目类别:
Continuing Grant
Collaborative Research: Converging on a Physical Basis for Rate and State Friction through Nano-to-Macro-Scale Friction and Adhesion Experiments on Geological Materials
合作研究:通过地质材料的纳米到宏观摩擦和粘附实验,汇聚速率和状态摩擦的物理基础
- 批准号:
1464714 - 财政年份:2014
- 资助金额:
$ 25.99万 - 项目类别:
Continuing Grant
Collaborative Research: Converging on a Physical Basis for Rate and State Friction through Nano-to-Macro-Scale Friction and Adhesion Experiments on Geological Materials
合作研究:通过地质材料的纳米到宏观摩擦和粘附实验,汇聚速率和状态摩擦的物理基础
- 批准号:
1141142 - 财政年份:2012
- 资助金额:
$ 25.99万 - 项目类别:
Standard Grant