EAGER: ML-enabled early warning of blockage and beam transitions in mobile, hybrid sub-6GHz/mmWave systems
EAGER:支持 ML 的移动混合 6GHz/毫米波系统中的阻塞和波束转换预警
基本信息
- 批准号:2122012
- 负责人:
- 金额:$ 9.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The emerging generation of cellular communication, 5G, is expected to utilize frequencies in the range of tens to hundreds of GHz (mmWave) to overcome the bandwidth limitations inherent to 4G (sub-6 GHz) systems. However, mmWave signals do not propagate as far, are more susceptible to blocking by physical objects, and require more directional communication than 4G signals. Indeed, early deployments of commercial 5G mmWave networks in 2019 and 2020 have suffered from major coverage and penetration problems. This project evaluates the feasibility of a novel, potentially transformative approach to obtain an early warning of blockages and antenna beam transitions at mmWave (5G) using sub-6GHz (4G-like) observations. Suitability of machine learning (ML) for enabling this task is investigated. A realistic physics-based propagation model is enhanced to validate the proposed approach. The project is strengthened by the interdisciplinary PI team with combined expertise in communication theory, signal processing, and propagation physics. The proposed methods introduce innovations to advance the broader fields of 5G networks and mmWave propagation modeling. The insights of the proposed research will be integrated into courses and presentations to student organizations, and the outcomes published for professionals. A graduate student and undergraduate students will be trained in a diverse, multidisciplinary, and inclusive environment about vibrant wireless communications topics. Close collaboration with NSF BWAC and PAWR platforms will enhance the success of proposed research and outreach plans by dissemination of the research outcomes in the centers' events.This high-risk, high reward project develops novel digital signal processing (DSP) and ML solutions for solving resiliency problems in real-world mmWave deployments. These methods are suitable for hybrid communication systems, where the sub-6 GHz and mmWave bands are employed simultaneously. Using the Fresnel theory of diffraction and our accurate physics-based model, we have previously demonstrated that diffracted sub-6 GHz signals reach a specified received signal strength (RSS) threshold much earlier than mmWave signals. The latter property is exploited in this project to develop an early-warning method that forecasts blockage, beam direction, and other rapid changes in mmWave signals several to tens of milliseconds (several to hundreds of slots) ahead in mobile communications systems. The early-warning approach provides hybrid mobile communications systems with sufficient time to adapt the data rate, change the antenna direction, or perform a handover between the two frequencies or base stations before a significant change of the mmWave signal occurs. The early warning method relies solely on the physical properties of diffraction, not on measured environments or dense beams or users. It improves resilience of mobile mmWave networks to blockages and other rapid signal changes by continuously adapting to the environmental features, e.g., moving obstacles or small reflectors not captured by base-station siting, environmental mapping, and other previously proposed approaches. The early warning algorithm is trained and validated using an accurate spatiotemporal sub-6 GHz/mmWave hybrid channel model, which can provide a large set of physically realistic scenarios. Utilization of the physical model in this project will provide insights for collecting 'smart data' in future hybrid channel measurements using PAWR platform at NC State and online data repositories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新兴一代蜂窝通信5G预计将利用数十至数百GHz(毫米波)范围内的频率来克服4G(低于6 GHz)系统固有的带宽限制。然而,毫米波信号传播得不那么远,更容易受到物理物体的阻挡,并且需要比4G信号更定向的通信。事实上,2019年和2020年商用5G毫米波网络的早期部署遭遇了重大的覆盖和渗透问题。该项目评估了一种新的、潜在的变革性方法的可行性,该方法使用低于6 GHz(类似4G)的观测结果在毫米波(5G)上获得阻塞和天线波束转换的早期预警。研究了机器学习(ML)实现这一任务的适用性。一个现实的基于物理的传播模型增强,以验证所提出的方法。该项目得到了跨学科PI团队的加强,该团队具有通信理论,信号处理和传播物理学方面的综合专业知识。所提出的方法引入了创新,以推进5G网络和毫米波传播建模的更广泛领域。拟议研究的见解将被整合到课程和演示给学生组织,并为专业人士发表的成果。研究生和本科生将在一个多元化,多学科和包容性的环境中接受关于充满活力的无线通信主题的培训。与NSF BWAC和PAWR平台的密切合作将通过在中心活动中传播研究成果来提高拟议研究和推广计划的成功率。这个高风险、高回报的项目开发了新型数字信号处理(DSP)和ML解决方案,用于解决现实世界毫米波部署中的弹性问题。这些方法适用于混合通信系统,其中同时采用子6 GHz和毫米波频带。使用菲涅耳衍射理论和我们精确的基于物理的模型,我们之前已经证明,衍射的6 GHz以下信号比毫米波信号更早达到指定的接收信号强度(RSS)阈值。在该项目中利用后一种特性来开发一种早期预警方法,该方法在移动的通信系统中提前几到几十毫秒(几到几百个时隙)预测阻塞、波束方向和毫米波信号的其他快速变化。预警方法为混合移动的通信系统提供了足够的时间,以在毫米波信号发生显著变化之前调整数据速率、改变天线方向或执行两个频率或基站之间的切换。预警方法仅依赖于衍射的物理特性,而不是测量环境或密集光束或用户。它通过不断适应环境特征,提高了移动的毫米波网络对阻塞和其他快速信号变化的恢复能力,例如移动的障碍物或小的反射体不能被基站选址、环境测绘和其他先前提出的方法捕获。使用精确的时空子6 GHz/mmWave混合信道模型来训练和验证预警算法,该模型可以提供大量的物理现实场景。该项目中的物理模型的利用将为在未来的混合通道测量中使用北卡罗来纳州的PAWR平台和在线数据存储库收集“智能数据”提供见解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Early Warning of mmWave Signal Blockage Using Diffraction Properties and Machine Learning
利用衍射特性和机器学习对毫米波信号阻塞进行早期预警
- DOI:10.1109/lcomm.2022.3204636
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Fallah Dizche, Amirhassan;Duel-Hallen, Alexandra;Hallen, Hans
- 通讯作者:Hallen, Hans
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandra Duel-Hallen其他文献
Performance Comparison of Multiuser Detectors with Channel Estimation for Flat Rayleigh Fading CDMA Channels
- DOI:
10.1023/a:1008805006624 - 发表时间:
1998-01-01 - 期刊:
- 影响因子:2.200
- 作者:
Hsin-Yu Wu;Alexandra Duel-Hallen - 通讯作者:
Alexandra Duel-Hallen
Decorrelating detector with diversity combining for single user frequency-selective rayleigh fading multipath channels
- DOI:
10.1007/bf00333929 - 发表时间:
1996-01-01 - 期刊:
- 影响因子:2.200
- 作者:
Michael W. Mydlow;Sridevi Basavaraju;Alexandra Duel-Hallen - 通讯作者:
Alexandra Duel-Hallen
Alexandra Duel-Hallen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandra Duel-Hallen', 18)}}的其他基金
Retrofit Control: A New, Modular Gyrator Control Approach for Integrating Large-Scale Renewable Power
改造控制:一种用于集成大规模可再生能源的新型模块化回转器控制方法
- 批准号:
1711004 - 财政年份:2017
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
SGER: Channel Modeling and Adaptive Transmitter/Receiver Design for Outdoor Ultrawideband Communication Systems
SGER:室外超宽带通信系统的信道建模和自适应发射机/接收机设计
- 批准号:
0809612 - 财政年份:2008
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
ITR: Adaptive Signaling and MIMO Precoding for Rapidly Time-Varying Fading Channels
ITR:针对快速时变衰落信道的自适应信令和 MIMO 预编码
- 批准号:
0312294 - 财政年份:2003
- 资助金额:
$ 9.99万 - 项目类别:
Continuing Grant
Joint Transmitter and Receiver Optimization for Fast Fading Mobile Radio Channels Using Deterministic Channel Modeling
使用确定性信道建模对快衰落移动无线电信道进行联合发射机和接收机优化
- 批准号:
9815002 - 财政年份:1999
- 资助金额:
$ 9.99万 - 项目类别:
Continuing Grant
Wireless Channel Characterization with Implications on Coding and Throughput Optimization for Multiuser Systems
无线信道表征对多用户系统编码和吞吐量优化的影响
- 批准号:
9725271 - 财政年份:1998
- 资助金额:
$ 9.99万 - 项目类别:
Continuing Grant
Prediction of Fast Fading Parameters by Resolving the Multipath Interference Pattern
通过解决多径干扰模式来预测快衰落参数
- 批准号:
9726033 - 财政年份:1997
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
RIA: Multiuser Detectors and Equalizers for Present and Future Wireless Networks
RIA:当前和未来无线网络的多用户检测器和均衡器
- 批准号:
9410227 - 财政年份:1994
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
相似国自然基金
融合超声、双参数MRI及临床相关参数构建PSA 4~20ng/mL区段前列腺癌可视化预测模型的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
“DFT+ML”协同探索原子精确金纳米团簇的类酶催化性质
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
机器学习力场EEM-ML的构建及离子液体基电解液离子状态和离子传输的研究
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
表面增强拉曼光谱技术探究tRNA异戊烯基转移酶提高ML210 药效
的调控机制
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ML-11调控斜纹夜蛾Toll信号途径抑制AcMNPV感染的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脂质识别蛋白ML调控褐飞虱若虫发育与雌虫生殖的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
昆虫Toll-ML信号通路调控宿主抵抗杆状病毒侵染的分子机制
- 批准号:U22A20488
- 批准年份:2022
- 资助金额:257.00 万元
- 项目类别:联合基金项目
基于ML-MCTDH的多原子分子表面反应量子动力学算法开发和应用
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
水稻耐直播相关基因ML1的功能验证及作用机理研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
泛素特异性蛋白酶1抑制剂ML323对非小细胞肺癌免疫微环境的激活及对CD318 CAR-T细胞的增效作用研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
An innovative platform using ML/AI to analyse farm data and deliver insights to improve farm performance, increasing farm profitability by 5-10%
An%20innovative%20platform%20using%20ML/AI%20to%20analysis%20farm%20data%20and%20deliver%20insights%20to%20improv%20farm%20performance,%20increasing%20farm%20profitability%20by%205-10%
- 批准号:
10093235 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Collaborative R&D
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Studentship
FMO/ML-Guided Drug Design: Accelerating Novel Inhibitor Development and Drug Discovery
FMO/ML 引导的药物设计:加速新型抑制剂的开发和药物发现
- 批准号:
24K20888 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
COMET: Communications Enabled, AI/ML based Digital Twins for Smart city Logistics and Last Mile applications
COMET:支持通信、基于 AI/ML 的数字孪生,用于智慧城市物流和最后一英里应用
- 批准号:
10099265 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Collaborative R&D
An innovative bedside light that uses AI/ML to track sleep, monitor the environment and suggest improvements to help those impacted by insomnia
创新的床头灯,使用人工智能/机器学习来跟踪睡眠、监测环境并提出改进建议以帮助那些受失眠影响的人
- 批准号:
10100216 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Collaborative R&D
ML assisted Film Post Production
机器学习辅助电影后期制作
- 批准号:
10087901 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Collaborative R&D
CSR: Small: Latency-controlled Reduction of Data Center Expenses for Handling Bursty ML Inference Requests
CSR:小:通过延迟控制减少数据中心处理突发 ML 推理请求的费用
- 批准号:
2336886 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
OAC Core: Enhancing Network Security by Implementing an ML Malware Detection and Classification Scheme in P4 Programmable Data Planes and SmartNICs
OAC 核心:通过在 P4 可编程数据平面和智能网卡中实施 ML 恶意软件检测和分类方案来增强网络安全
- 批准号:
2403360 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
An innovative Lawtech AI/ML platform with human oversight that manages off-payroll worker status and periodically assesses the role status to ensure accuracy.
具有人工监督功能的创新 Lawtech AI/ML 平台,可管理工资外员工的状态并定期评估角色状态以确保准确性。
- 批准号:
10099483 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Collaborative R&D