Collaborative Research: HDR DSC: Building Capacity in Data Science through Biodiversity, Conservation, and General Education
合作研究:HDR DSC:通过生物多样性、保护和通识教育建设数据科学能力
基本信息
- 批准号:2122991
- 负责人:
- 金额:$ 52.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Solving environmental challenges relies heavily on computer science and statistical skills applied to large data sets. However, these knowledge, skills, and abilities are not evenly distributed across U.S. colleges, students, or faculty. This project works to transform environmental education by creating, implementing, and evaluating a data science training program for undergraduate students who are interested in conservation and management in urban and wild areas. Faculty from both the University of Arizona and Lewis and Clark College co-teach a foundational data science course that utilizes public data and addresses pressing environmental concerns relevant to student interests and identities. Exceptional students subsequently participate in a more focused cooperative course as data science interns for conservation stakeholders. Professional development workshops in data science education for instructional faculty, some of whom work in institutions serving primarily low-income students and students of color, prepare faculty to implement data science educational modules at their respective institutions. These critical resources and pathways allow broad communities to harness the data revolution.The workforce demand for data analysts and data scientists exceeds the current capacity for higher education to produce this skilled workforce. The overall goal of this project is development of scalable, portable data science education that can be readily incorporated into existing programs concentrating on STEM (science, technology, engineering, and mathematics), with a focus on ecology, biodiversity, and conservation. The project achieves this goal by creating multiple curricular data science on-ramps for a broad range of students early in their undergraduate training, through general education courses and foundational major courses using inclusive and expansive pedagogy techniques more common in liberal arts education. The expected outcomes from these activities are (1) development of reusable data science modules and courses that can be deployed into existing undergraduate general education and major curricula, (2) the ability for a broad range of conservation interested students to access real-world data science training they are passionate about at an early stage of their education, and (3) training and support mechanisms for undergraduate educators who wish to add data science to their curricula. The products of this proposed multi-institutional Data Science Corps program are designed to be generally extensible to other higher educational institutions and majors through open data and open science, providing capacity to rapidly deploy data science training.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
解决环境挑战在很大程度上依赖于应用于大型数据集的计算机科学和统计技能。然而,这些知识、技能和能力在美国大学、学生或教师中的分布并不均匀。该项目致力于通过为对城市和野生地区的保护和管理感兴趣的本科生创建,实施和评估数据科学培训计划来改变环境教育。来自亚利桑那大学和刘易斯和克拉克学院的教师共同教授基础数据科学课程,该课程利用公共数据并解决与学生兴趣和身份相关的紧迫环境问题。特殊的学生随后参加更有针对性的合作课程,作为保护利益相关者的数据科学实习生。教学教师的数据科学教育专业发展研讨会,其中一些人在主要为低收入学生和有色人种学生服务的机构工作,为教师在各自机构实施数据科学教育模块做好准备。这些关键资源和途径使广泛的社区能够利用数据革命。对数据分析师和数据科学家的劳动力需求超过了目前高等教育培养这种熟练劳动力的能力。该项目的总体目标是开发可扩展的便携式数据科学教育,这些教育可以很容易地纳入现有的STEM(科学,技术,工程和数学)计划,重点是生态,生物多样性和保护。该项目通过在本科教育早期为广泛的学生创建多个课程数据科学入口,通过通识教育课程和基础专业课程,使用文科教育中更常见的包容性和扩展性教学法技术来实现这一目标。这些活动的预期成果是:(1)开发可重用的数据科学模块和课程,可以部署到现有的本科通识教育和主要课程中;(2)使广泛的保护感兴趣的学生能够在教育的早期阶段获得他们热衷的真实世界的数据科学培训,以及(3)为希望将数据科学添加到课程中的本科教育工作者提供培训和支持机制。这个多机构数据科学军团计划的产品旨在通过开放数据和开放科学广泛扩展到其他高等教育机构和专业,提供快速部署数据科学培训的能力。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响力审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Greta Binford其他文献
A molecular phylogenetic analysis of Speyeria and its implications for the management of the threatened Speyeria zerene hippolyta
- DOI:
10.1007/s10841-013-9605-5 - 发表时间:
2013-11-12 - 期刊:
- 影响因子:1.900
- 作者:
Anne McHugh;Paulette Bierzychudek;Christina Greever;Tessa Marzulla;Richard Van Buskirk;Greta Binford - 通讯作者:
Greta Binford
Specificity of <em>Loxosceles</em> α Clade Phospholipase D Enzymes for Choline-Containing Lipids: Role of a Conserved Aromatic Cage
- DOI:
10.1016/j.bpj.2020.11.1547 - 发表时间:
2021-02-12 - 期刊:
- 影响因子:
- 作者:
Emmanuel E. Moutoussamy;Qaiser Waheed;Greta Binford;Matthew Cordes;Hanif Muhammad Khan;Nathalie Reuter - 通讯作者:
Nathalie Reuter
Greta Binford的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Greta Binford', 18)}}的其他基金
RUI: Collaborative Research: Head Group Preference in Recluse Spider Phospholipase D Toxins
RUI:合作研究:隐士蜘蛛磷脂酶 D 毒素的头群偏好
- 批准号:
1807885 - 财政年份:2018
- 资助金额:
$ 52.77万 - 项目类别:
Standard Grant
Collaborative Research: The generation of a biodiversity hotspot: paleobiogeography of the Caribbean inferred from multiple arachnid lineages with differing dispersal abilities
合作研究:生物多样性热点的产生:从具有不同扩散能力的多个蛛形纲动物谱系推断加勒比海的古生物地理学
- 批准号:
1050253 - 财政年份:2011
- 资助金额:
$ 52.77万 - 项目类别:
Standard Grant
CAREER: Venom Evolution in Sicariid Spiders: A System for Undergraduate Training in Integrative Biology
职业:刀蜘蛛的毒液进化:综合生物学本科培训系统
- 批准号:
0546858 - 财政年份:2006
- 资助金额:
$ 52.77万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
HDR DSC: Collaborative Research: Creating and Integrating Data Science Corps to Improve the Quality of Life in Urban Areas
HDR DSC:协作研究:创建和整合数据科学团队以提高城市地区的生活质量
- 批准号:
2321574 - 财政年份:2023
- 资助金额:
$ 52.77万 - 项目类别:
Standard Grant
HDR DSC: Collaborative Research: The Data Science WAV: Experiential Learning with Local Community Organizations
HDR DSC:协作研究:数据科学 WAV:与当地社区组织的体验式学习
- 批准号:
2242944 - 财政年份:2022
- 资助金额:
$ 52.77万 - 项目类别:
Standard Grant
Collaborative Research: HDR DSC: Infusion of data science and computation into engineering curricula
合作研究:HDR DSC:将数据科学和计算融入工程课程
- 批准号:
2123237 - 财政年份:2021
- 资助金额:
$ 52.77万 - 项目类别:
Standard Grant
Collaborative Research: HDR DSC: Increasing Accessibility through Building Alternative Data Science Pathways
合作研究:HDR DSC:通过构建替代数据科学途径提高可访问性
- 批准号:
2123259 - 财政年份:2021
- 资助金额:
$ 52.77万 - 项目类别:
Continuing Grant
Collaborative Research: HDR DSC: The Metropolitan Chicago Data Science Corps (MCDC): Learning from Data to Support Communities
合作研究:HDR DSC:芝加哥大都会数据科学队 (MCDC):从数据中学习以支持社区
- 批准号:
2123486 - 财政年份:2021
- 资助金额:
$ 52.77万 - 项目类别:
Standard Grant
Collaborative Research: HDR DSC: Increasing Accessibility through Building Alternative Data Science Pathways
合作研究:HDR DSC:通过构建替代数据科学途径提高可访问性
- 批准号:
2123260 - 财政年份:2021
- 资助金额:
$ 52.77万 - 项目类别:
Continuing Grant
Collaborative Research: HDR DSC: The Metropolitan Chicago Data Science Corps (MCDC): Learning from Data to Support Communities
合作研究:HDR DSC:芝加哥大都会数据科学队 (MCDC):从数据中学习以支持社区
- 批准号:
2123447 - 财政年份:2021
- 资助金额:
$ 52.77万 - 项目类别:
Continuing Grant
Collaborative Research: Framework: Data: NSCI: HDR: GeoSCIFramework: Scalable Real-Time Streaming Analytics and Machine Learning for Geoscience and Hazards Research
协作研究:框架:数据:NSCI:HDR:GeoSCIFramework:用于地球科学和灾害研究的可扩展实时流分析和机器学习
- 批准号:
2219975 - 财政年份:2021
- 资助金额:
$ 52.77万 - 项目类别:
Standard Grant
Collaborative Research: HDR DSC: Infusion of Data Science and Computation into Engineering Curricula
合作研究:HDR DSC:将数据科学和计算融入工程课程
- 批准号:
2123244 - 财政年份:2021
- 资助金额:
$ 52.77万 - 项目类别:
Standard Grant
Collaborative Research: HDR DSC: DS-PATH: Data Science Career Pathways in the Inland Empire)
合作研究:HDR DSC:DS-PATH:内陆帝国的数据科学职业道路)
- 批准号:
2123313 - 财政年份:2021
- 资助金额:
$ 52.77万 - 项目类别:
Continuing Grant