Collaborative Research: CISE-ANR: CNS Core: Small: Modeling Modern Network Traffic: From Data Representation to Automated Machine Learning

合作研究:CISE-ANR:CNS 核心:小型:现代网络流量建模:从数据表示到自动化机器学习

基本信息

  • 批准号:
    2124424
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

To successfully maintain and secure communications networks, operators need to monitor their behavior and investigate security, performance, and other problems as they arise. Recent advances in network protocols and applications present fundamental challenges for monitoring network traffic. Specifically, Internet traffic, from web traffic to Domain Name System (DNS) queries and responses, is becoming ubiquitously encrypted, obfuscating information that might otherwise be available for these tasks. Additionally, network traffic is increasing in volume and rate, precluding detailed logging and analyzing individual packets or streams. Finally, the Internet is becoming more centralized, and many services have also become cloud-based, making it more difficult to identify applications or services according to fixed identifiers such as IP addresses and port numbers. Answering even basic questions about Internet traffic has thus become increasingly challenging. This project seeks to develop techniques to regain visibility and insights into modern network traffic considering these trends. We address three research questions towards regaining visibility into modern network traffic. First, this project will study how to represent traffic data in ways that are amenable to modeling, and that could optimize models for both supervised and unsupervised modeling tasks. We will explore the impact of representations across four dimensions: (1) timeseries representations; (2) representations across flows; (3) representations at higher layers; and (4) operations on compressed data. Second, we will build on our work on traffic data representation to develop a set of tools to automatically explore model and traffic representations tailored for network traffic problems. Towards this goal, we will build a large-scale repository of labeled flows across several different applications and services as well as evaluate data representations that will be used to build statistical learning models about network traffic. Finally, we will use the software platforms and algorithms we build to design new techniques and tools for operators to solve the challenges that prevent them from transferring developed models from laboratory experiments to real-world deployments. We will extend automated model selection to account for systems costs and real-world limitations; address the need to be able to determine when models become inaccurate and to distinguish model inaccuracies from problems that are inherent to the network; and improve model robustness by investigating general approaches for model transfer. All software we create in this project will be publicly available and open source. Additionally, we plan to integrate the software systems into tutorials for the community, undergraduate and graduate courses, and outreach and education programs in the community, in collaboration with partners such as the University of Chicago's Office of Special Programs and Office of Civic Engagement.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了成功维护和保护通信网络,操作员需要监视其行为,并在出现的安全性,绩效和其他问题进行调查。网络协议和应用程序的最新进展提出了监视网络流量的基本挑战。具体来说,从网络流量到域名系统(DNS)查询和响应的互联网流量已变得无处不在,令人困惑的信息可能可用于这些任务。 此外,网络流量的数量和速率正在增加,排除了详细的日志记录和分析单个数据包或流。最后,互联网变得越来越集中,许多服务也已成为云,使根据固定标识符(例如IP地址和端口号)识别应用程序或服务变得更加困难。 因此,即使回答有关互联网流量的基本问题也变得越来越具有挑战性。考虑到这些趋势,该项目旨在开发技术,以重新获得可见性并洞悉现代网络流量。 我们解决了三个研究问题,以重新获得现代网络流量。首先,该项目将研究如何以适合建模的方式来表示流量数据,并可以优化监督和无监督的建模任务的模型。我们将探讨跨四个维度的表示的影响:(1)时间表表示; (2)跨流的表示; (3)较高层的表示; (4)对压缩数据进行操作。 其次,我们将基于流量数据表示的工作,以开发一组工具,以自动探索针对网络流量问题的模型和流量表示。为了实现这一目标,我们将在几个不同的应用程序和服务上构建一个大规模的标记流量,并评估将用于构建有关网络流量的统计学习模型的数据表示。最后,我们将使用我们构建的软件平台和算法来设计新技术和工具,以解决操作员的挑战,以防止它们从实验室实验转移到现实世界部署。我们将扩展自动化模型选择以说明系统成本和现实世界的限制;满足能够确定模型何时变得不准确的需求,并将模型不准确与网络固有的问题区分开来;并通过研究模型转移的一般方法来提高模型鲁棒性。 我们在此项目中创建的所有软件都将公开可用和开源。 Additionally, we plan to integrate the software systems into tutorials for the community, undergraduate and graduate courses, and outreach and education programs in the community, in collaboration with partners such as the University of Chicago's Office of Special Programs and Office of Civic Engagement.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zakir Durumeric其他文献

SoK: Hate, Harassment, and the Changing Landscape of Online Abuse.
SoK:仇恨、骚扰和不断变化的网络虐待格局。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kurt Thomas;Devdatta Akhawe;Michael Bailey;Dan Boneh;Elie Bursztein;Sunny Consolvo;Nicola Dell;Zakir Durumeric;Patrick Kelley;Deepak Kumar
  • 通讯作者:
    Deepak Kumar
Watch Your Language: Large Language Models and Content Moderation
注意你的语言:大型语言模型和内容审核
  • DOI:
    10.48550/arxiv.2309.14517
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Deepak Kumar;Y. AbuHashem;Zakir Durumeric
  • 通讯作者:
    Zakir Durumeric
Toppling top lists: evaluating the accuracy of popular website lists
推翻热门列表:评估热门网站列表的准确性
On the Centralization and Regionalization of the Web
论网络的集中化和区域化
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gautam Akiwate;Kimberly Ruth;Rumaisa Habib;Zakir Durumeric
  • 通讯作者:
    Zakir Durumeric
On the Mismanagement and Maliciousness of Networks
论网络的管理不善和恶意

Zakir Durumeric的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zakir Durumeric', 18)}}的其他基金

IMR: MM-1C: An Extensible Platform for Asking Research Questions of High-Speed Network Links
IMR:MM-1C:用于提出高速网络链路研究问题的可扩展平台
  • 批准号:
    2319080
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
IMR: MT: Tools for Safe, Easy, and Reliable Active Global Internet Measurement
IMR:MT:用于安全、简单和可靠的主动全球互联网测量的工具
  • 批准号:
    2223360
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CISE: Large: Cross-Layer Resilience to Silent Data Corruption
协作研究:CISE:大型:针对静默数据损坏的跨层弹性
  • 批准号:
    2321492
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
  • 批准号:
    2321531
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: 2023 CISE Education and Workforce PI and Community Meeting
协作研究:会议:2023 年 CISE 教育和劳动力 PI 和社区会议
  • 批准号:
    2318593
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: 2023 CISE Education and Workforce PI and Community Meeting
协作研究:会议:2023 年 CISE 教育和劳动力 PI 和社区会议
  • 批准号:
    2318592
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: RCBP-ED: CCRI: TechHouse Partnership to Increase the Computer Engineering Research Expansion at Morehouse College
合作研究:CISE-MSI:RCBP-ED:CCRI:TechHouse 合作伙伴关系,以促进莫尔豪斯学院计算机工程研究扩展
  • 批准号:
    2318703
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了