ATD: Inductive Spatiotemporal Graph Encoding for Interpretable and Transferable Deep Learning with Application in Human Dynamics

ATD:用于可解释和可迁移深度学习的归纳时空图编码及其在人体动力学中的应用

基本信息

项目摘要

This project aims to develop novel statistical and computational methods to address the emerging issues in human dynamics, including detecting anomalies in human mobility, predicting potential disastrous damage, and monitoring disease outbreak in our society. At present, the proliferation of digital mobility data, such as phone records, GPS traces, and social media posts, combined with the outstanding predictive power of statistical learning, triggered the applications of deep learning by using the mobility of individuals as a proxy to study human dynamics. This project will provide interpretable and transferable methods for discovering unusual events in any super-large spatiotemporal data set, inspire a new line of research in big data analytics, and offer a unique opportunity for students to participate in cutting-edge and interdisciplinary big data research. This project will support one graduate student per year at each university for each of the three years of the project. This project uses a proxy such as mobile phone dynamic graphs to develop human dynamics models that can be used for threat detection and infectious disease prediction. Mobility data is naturally represented as a dynamic graph, where any individual node represents a location or a group of people, and its connections correspond to measures of mobility between the nodes. The anomaly node or connection can be used for detecting threats or disasters. One concrete application is predicting the super-spreaders and the number of infections of COVID-19 using the SafeGraph data that consists of the trajectory of millions of mobile phone users, which is clinically essential to harness the virus spreading. Questions to be explored in this research project include: (1) How to encode the dynamic graphs evolving spatiotemporal information at node (or subgraph) level into low-dimensional embedding vectors that can be used as feature inputs for further downstream prediction and inference (2) How to quantify the importance of nodes and connections in the dynamic graph for virus transmission (3) How to transfer knowledge from mobility data and multi-source data of the source locations to predict the epidemic trends for new locations with fewer observations. This project will address these questions and develop a general framework for inductive spatial encoding in large dynamic graphs, which enables interpretable, and transferable learning for different locations or tasks. The fast, transferable computing principles developed in dynamic graph modeling are fundamental and indispensable tools for “big data” computation and autonomous systems. The principles will be widely applicable to diverse fields of sciences, engineering, and humanities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在开发新的统计和计算方法,以解决人类动力学中出现的问题,包括检测人类流动性异常,预测潜在的灾难性损害,以及监测我们社会中的疾病爆发。 目前,电话记录、GPS跟踪和社交媒体帖子等数字移动数据的激增,加上统计学习的出色预测能力,引发了深度学习的应用,将个人的移动性作为研究人类动态的代理。 该项目将提供可解释和可转移的方法,用于发现任何超大时空数据集中的异常事件,激发大数据分析的新研究路线,并为学生提供参与尖端和跨学科大数据研究的独特机会。该项目将在项目的三年中每年资助每所大学的一名研究生。该项目使用代理,如移动的手机动态图,开发可用于威胁检测和传染病预测的人体动力学模型。移动性数据自然表示为动态图,其中任何单个节点表示位置或一组人,其连接对应于节点之间的移动性度量。 异常节点或连接可以用于检测威胁或灾难。一个具体的应用是使用SafeGraph数据预测COVID-19的超级传播者和感染人数,该数据由数百万移动的手机用户的轨迹组成,这对控制病毒传播至关重要。本研究项目中要探讨的问题包括:(1)如何对节点处演化时空信息的动态图进行编码(或子图)级别转化为低维嵌入向量,可作为特征输入,用于进一步的下游预测和推理(2)如何量化动态图中节点和连接对病毒传播的重要性(3)如何从源地点的移动数据和多源数据中转移知识,以较少的观测值预测新地点的流行趋势。该项目将解决这些问题,并开发一个通用框架,用于在大型动态图中进行归纳空间编码,从而为不同的位置或任务提供可解释和可转移的学习。在动态图建模中开发的快速、可转移的计算原理是“大数据”计算和自治系统的基本和不可或缺的工具。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xin Xing其他文献

Polyoxometalate-based crystalline materials as a highly sensitive electrochemical sensor for detecting trace Cr(VI)
基于多金属氧酸盐的晶体材料作为高灵敏度电化学传感器,用于检测痕量 Cr(VI)
  • DOI:
    10.1039/d0dt00446d
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Xin Xing;Hu Na;Ma Yuanyuan;Wang Yali;Hou Lin;Zhang Heng;Han Zhangang
  • 通讯作者:
    Han Zhangang
Supplementary to ”Minimax Nonparametric Multi-sample Test Under Smoothing”
补充“平滑下的极小极大非参数多样本检验”
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xin Xing;Zuofeng Shang;Pang Du;Ping Ma;Wenxuan Zhong;Jun S. Liu
  • 通讯作者:
    Jun S. Liu
The effect of bladder catheterization on the incidence of urinary tract infection in laboring women with epidural analgesia: a meta-analysis of randomized controlled trials
膀胱导尿术对硬膜外镇痛产妇尿路感染发生率的影响:随机对照试验的荟萃分析
  • DOI:
    10.1007/s00192-019-03904-1
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Mei;Xin Xing;L. Yao;Xiaoqin Wang;Wenbo He;Meng Wang;Huijuan Li;Yangqin Xun;Peijing Yan;Xu Hui;Xinmin Yang;Kehu Yang
  • 通讯作者:
    Kehu Yang
Sufficient Dimension Reduction for Tensor Data
张量数据的充分降维
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiwen Liu;Xin Xing;Wenxuan Zhong
  • 通讯作者:
    Wenxuan Zhong
A Scalable Reference-Free Metagenomic Binning Pipeline
可扩展的无参考宏基因组分箱流程
  • DOI:
    10.1007/978-3-319-94968-0_7
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Terry Ma;Xin Xing
  • 通讯作者:
    Xin Xing

Xin Xing的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xin Xing', 18)}}的其他基金

Collaborative Research: Multiple Hypothesis Testing on the Regression Analysis
合作研究:回归分析的多重假设检验
  • 批准号:
    2311215
  • 财政年份:
    2023
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Accelerating Scientific Discovery via Deep Learning with Strong Physics Inductive Biases
职业:通过具有强物理归纳偏差的深度学习加速科学发现
  • 批准号:
    2338909
  • 财政年份:
    2024
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Continuing Grant
Safe Power Delivery Using a Reconfigurable Mesh of Inductive Transceivers
使用可重新配置的感应式收发器网实现安全电力传输
  • 批准号:
    EP/X020606/1
  • 财政年份:
    2023
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Research Grant
Creation of a new semiconductor device manufacturing process using inductive charging technology aimed at reducing CO2 emissions
使用感应充电技术创建新的半导体器件制造工艺,旨在减少二氧化碳排放
  • 批准号:
    23K03627
  • 财政年份:
    2023
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Simultaneous multi-variable measurements of velocity and scalar fields for inductive environmental assessment
用于感应环境评估的速度场和标量场的同步多变量测量
  • 批准号:
    23H01569
  • 财政年份:
    2023
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
RI: Small: Understanding the Inductive Bias Caused by Invariance and Multi Scale in Neural Networks
RI:小:理解神经网络中不变性和多尺度引起的归纳偏差
  • 批准号:
    2213335
  • 财政年份:
    2022
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Standard Grant
CRCNS: Neural Basis of Inductive Bias
CRCNS:归纳偏差的神经基础
  • 批准号:
    10916854
  • 财政年份:
    2022
  • 资助金额:
    $ 34.25万
  • 项目类别:
Improving Inductive Reasoning Skills in Polymer Science Through Open Virtual Experiment Simulator Education Tools
通过开放式虚拟实验模拟器教育工具提高高分子科学中的归纳推理技能
  • 批准号:
    2142043
  • 财政年份:
    2022
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Standard Grant
Realization of novel devices with inductive ac spin current
具有感应交流自旋电流的新型器件的实现
  • 批准号:
    22K14301
  • 财政年份:
    2022
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
On the range of invariant problem for inductive limit type actions of Z_2 on AF algebras
AF代数上Z_2归纳极限型作用不变问题的范围
  • 批准号:
    573357-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 34.25万
  • 项目类别:
    University Undergraduate Student Research Awards
Investigating the impact of youth's inductive exploration of local technologies featured in Indigenous stories on their engagement, self-efficacy, and persistence in STEM
调查青年对土著故事中的当地技术的归纳探索对其参与、自我效能和坚持 STEM 的影响
  • 批准号:
    2215554
  • 财政年份:
    2022
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了