Automating At-Home Balance Training Using Wearable Sensors

使用可穿戴传感器自动化家庭平衡训练

基本信息

项目摘要

Reductions in balance ability caused by aging and sensory disabilities have a negative impact on quality of life and long-term health. Poor balance increases the risk of falls, fear of falling, and sedentary lifestyles, which contribute to subsequent morbidity, mortality, and increased healthcare costs. Balance training designed to strengthen or restore the complex sensorimotor pathways that lead to successful balance can improve function in individuals at risk for falls; however, clinic-based sessions administered by physical therapists are limited by patient load and insurance constraints. Current home-based training is not as effective as it could be because patients cannot accurately assess their performance or effectively self-progress their training without expert guidance. This project will advance science and promote national health, prosperity, and welfare by developing and verifying wearable technology and data-driven models capable of 1) remotely assessing balance in users’ homes; and 2) recommending balance exercises informed by models of observed clinical decision-making that adequately and safely challenge users based on their evolving balance abilities. This research is a first and necessary step in achieving the long-term goal of creating automated balance training technologies to complement, supplement, and increase access to clinic-quality care. The outcomes of this research have the potential to be adapted to a diverse population of Americans with a wide range of balance and gait impairments including sensory, neurological, and motor disorders. Additionally, students will be engaged through multiple curricular offerings including hands-on design course projects with broader community interactions.This research takes the first step toward developing wearable technology and machine intelligence that will enable balance training programs that can be performed in the absence of real-time physical therapist (PT) guidance. The project will (1) identify important kinematic and visual information used by physical therapists to estimate underlying balance exercise ability and to inform clinical-decision making regarding balance exercise progression, and (2) assess the capabilities of adaptive machine learning models to simulate expert-informed balance exercise progression strategies that are responsive to the evolving needs of different individuals and groups. To achieve these objectives, eye movement tracking and patient kinematic measures will be collected in both live and asynchronous video-recorded formats to identify key aspects of information-gathering relevant to physical therapists’ evaluations of adult balance capabilities. Additionally, Markov decision process modeling under a reinforcement learning framework will capture the dynamics of the physical therapist-patient co-adaptation of effective exercise progression policies. The models to be developed will capture the iterative, co-adaptive process of expert-patient interaction that evolves over the course of the training program, where the patient adapts their sensorimotor behavior due to the selected training and the physical therapist adapts the training based on patient progress. This work will result in the development of models that integrate heterogeneous clinical and biomechanical data and generate new approaches for modeling expert-patient interaction that are robust to patient differences and co-adaptive between the expert and patient over time. The development of models that characterize the dynamic process of physical therapist-patient interaction in a rehabilitative setting promises to inform future efforts to develop effective, scalable at-home balance training solutions for older adults and people with vestibular dysfunction. Such solutions would complement and/or supplement the current provision of balance training within clinical settings using adaptive wearable technology at home. Furthermore, the framework and technology that will be developed through this research may be adapted for use in other clinic-based training contexts (e.g., stroke recovery and post-surgical rehabilitation).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
衰老和感官障碍导致的平衡能力下降对生活质量和长期健康产生负面影响。平衡不良会增加福尔斯跌倒的风险、对跌倒的恐惧和久坐不动的生活方式,从而导致随后的发病率、死亡率和医疗费用增加。平衡训练旨在加强或恢复导致成功平衡的复杂感觉运动通路,可以改善有福尔斯跌倒风险的个体的功能;然而,由物理治疗师管理的基于诊所的会话受到患者负荷和保险约束的限制。目前的家庭训练并不像它可能的那样有效,因为患者无法准确评估他们的表现或在没有专家指导的情况下有效地自我进步他们的训练。该项目将通过开发和验证可穿戴技术和数据驱动模型来推动科学发展,促进国民健康、繁荣和福利,这些技术和模型能够:1)远程评估用户家中的平衡; 2)根据观察到的临床决策模型推荐平衡练习,这些临床决策模型根据用户不断发展的平衡能力充分、安全地挑战用户。这项研究是实现创建自动平衡训练技术以补充,补充和增加临床质量护理的长期目标的第一步和必要步骤。这项研究的结果有可能适用于各种平衡和步态障碍的美国人,包括感觉,神经和运动障碍。此外,学生将参与多种课程,包括具有更广泛社区互动的实践设计课程项目。这项研究迈出了开发可穿戴技术和机器智能的第一步,这将使平衡训练计划能够在没有实时物理治疗师(PT)指导的情况下进行。该项目将(1)识别物理治疗师使用的重要运动学和视觉信息,以估计潜在的平衡运动能力,并为平衡运动进展的临床决策提供信息,以及(2)评估自适应机器学习模型的能力,以模拟专家知情的平衡运动进展策略,以响应不同个人和群体不断变化的需求。为了实现这些目标,将以实时和异步视频记录格式收集眼动跟踪和患者运动学测量,以确定与物理治疗师评估成人平衡能力相关的信息收集的关键方面。此外,强化学习框架下的马尔可夫决策过程建模将捕获物理治疗师-患者共同适应有效运动进展策略的动态。待开发的模型将捕获在训练计划过程中演变的专家-患者交互的迭代、共同适应过程,其中患者由于所选训练而适应其感觉运动行为,物理治疗师根据患者的进展来适应训练。这项工作将导致模型的开发,整合异构的临床和生物力学数据,并产生新的方法来模拟专家-患者的互动,是强大的患者之间的差异和共同适应的专家和患者随着时间的推移。在康复环境中,物理治疗师与患者互动的动态过程模型的开发有望为未来的努力提供信息,为老年人和前庭功能障碍患者开发有效的,可扩展的家庭平衡训练解决方案。这样的解决方案将补充和/或补充在家中使用自适应可穿戴技术的临床环境内的平衡训练的当前提供。此外,将通过这项研究开发的框架和技术可以适用于其他基于临床的培训环境(例如,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kathleen Sienko其他文献

Part II: U.S.—Sub-Saharan Africa Educational Partnerships for Medical Device Design
  • DOI:
    10.1007/s10439-017-1898-1
  • 发表时间:
    2017-08-15
  • 期刊:
  • 影响因子:
    5.400
  • 作者:
    Brittany Ploss;Tania S. Douglas;Matthew Glucksberg;Elsie Effah Kaufmann;Robert A. Malkin;Janet McGrath;Theresa Mkandawire;Maria Oden;Akinniyi Osuntoki;Andrew Rollins;Kathleen Sienko;Robert T. Ssekitoleko;William Reichert
  • 通讯作者:
    William Reichert
Exploring Virtual Reality as a Design Observation Training Tool for Engineering Students
探索虚拟现实作为工科学生的设计观察训练工具

Kathleen Sienko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kathleen Sienko', 18)}}的其他基金

Characterizing the Use of Contextual Factors During Engineering Design
表征工程设计过程中背景因素的使用
  • 批准号:
    2201981
  • 财政年份:
    2022
  • 资助金额:
    $ 84.94万
  • 项目类别:
    Standard Grant
Learning to Automatically Evaluate Pathological Gait: A Data-Driven System for Characterizing Disability and Informing Therapeutic Interventions
学习自动评估病理步态:用于表征残疾和告知治疗干预的数据驱动系统
  • 批准号:
    1804945
  • 财政年份:
    2018
  • 资助金额:
    $ 84.94万
  • 项目类别:
    Standard Grant
EAGER: Engaging Stakeholders with Prototypes: Practitioner Approaches during Front-end Design
EAGER:让利益相关者参与原型:前端设计期间的从业者方法
  • 批准号:
    1745866
  • 财政年份:
    2017
  • 资助金额:
    $ 84.94万
  • 项目类别:
    Standard Grant
The development of the global engineer: Effects of ethnographic investigations on students' design decisions
全球工程师的发展:民族志调查对学生设计决策的影响
  • 批准号:
    1340459
  • 财政年份:
    2013
  • 资助金额:
    $ 84.94万
  • 项目类别:
    Standard Grant
Telerehabilitation balance training for community dwelling older adults
社区老年人远程康复平衡训练
  • 批准号:
    1159635
  • 财政年份:
    2012
  • 资助金额:
    $ 84.94万
  • 项目类别:
    Standard Grant
CAREER: Improving Postural Balance and Rehabilitation Outcomes Using Vibrotactile Sensory Substitution
职业:利用振动触觉感觉替代改善姿势平衡和康复效果
  • 批准号:
    0846471
  • 财政年份:
    2009
  • 资助金额:
    $ 84.94万
  • 项目类别:
    Standard Grant

相似海外基金

Home helper robots: Understanding our future lives with human-like AI
家庭帮手机器人:用类人人工智能了解我们的未来生活
  • 批准号:
    FT230100021
  • 财政年份:
    2025
  • 资助金额:
    $ 84.94万
  • 项目类别:
    ARC Future Fellowships
Project GANESHA - Getting power Access to rural-Nepal through thermally cooled battery Energy storage for transport and Home Applications
GANESHA 项目 - 通过热冷却电池为尼泊尔农村地区提供电力 用于运输和家庭应用的储能
  • 批准号:
    10085992
  • 财政年份:
    2024
  • 资助金额:
    $ 84.94万
  • 项目类别:
    Collaborative R&D
Home Office Criminal Justice System Strategy Analysis Fellowship
内政部刑事司法系统战略分析奖学金
  • 批准号:
    ES/Y004906/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84.94万
  • 项目类别:
    Fellowship
Smart Cues Toolkit: Supporting Physical Activity at Home with Interactive Contextual Cues
智能提示工具包:通过交互式上下文提示支持家庭体育活动
  • 批准号:
    EP/X036766/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84.94万
  • 项目类别:
    Research Grant
The costs and benefits of an empty nest: A longitudinal study of couples' relationship functioning when children leave the home
空巢的成本和收益:对孩子离开家时夫妻关系运作的纵向研究
  • 批准号:
    2336235
  • 财政年份:
    2024
  • 资助金额:
    $ 84.94万
  • 项目类别:
    Continuing Grant
“HOME”概念を用いた在宅療養高齢者の自分らしい暮らしの自己評価ツールの開発
利用“HOME”概念开发接受家庭护理的老年人生活方式自我评估工具
  • 批准号:
    24K20373
  • 财政年份:
    2024
  • 资助金额:
    $ 84.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Home Office National Crime and Justice Lab Policy: Crime Data Analytics UKRI Policy Fellowship
内政部国家犯罪和司法实验室政策:犯罪数据分析 UKRI 政策奖学金
  • 批准号:
    ES/Y004930/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84.94万
  • 项目类别:
    Fellowship
Enhancing outcomes for young people in out-of-home care who self-place
提高自我安置的户外护理年轻人的成果
  • 批准号:
    LP230100160
  • 财政年份:
    2024
  • 资助金额:
    $ 84.94万
  • 项目类别:
    Linkage Projects
Micron-scale, chemically-controlled, auto-injection systems for at-home drug delivery
用于家庭给药的微米级化学控制自动注射系统
  • 批准号:
    EP/X04128X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84.94万
  • 项目类别:
    Research Grant
When Global Human Resources Return Home: Exploring University Students' Post Study Abroad Experiences in Japanese Society
当全球人力资源回国:大学生留学后在日本社会的经历探寻
  • 批准号:
    24K04094
  • 财政年份:
    2024
  • 资助金额:
    $ 84.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了