Quantum optics with nonlinear organic small molecule enhanced integrated photonics devices

具有非线性有机小分子的量子光学增强集成光子器件

基本信息

  • 批准号:
    2126404
  • 负责人:
  • 金额:
    $ 37.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Quantum networking has emerged as a global grand challenge in the field of quantum information sciences, identified as a critical technology for enabling general purpose quantum computing and its applications. Therefore, developing implementable devices to accelerate quantum networking will advance US security and technical leadership. A flexible quantum network will have the ability to transmit an arbitrary quantum state with high-fidelity over room- (data-center), metropolitan- (LAN), continental- and trans-continental-distances. In this proposal, we provide a path for the development of quantum frequency converters (QFC’s) for translating the wavelength of photons into and between pre-assigned channels of the International Telecommunication Union (ITU) frequency grid, while preserving the delicate quantum information that is encoded on those photons. The planned approach is fully compatible with silicon photonics technology providing a scalable, robust, manufacturable platform for the generation of non-classical light and frequency translation of that light. The training and outreach efforts directly engage the scientific community and the general public. In collaboration with USC’s Center for Engineering Diversity, two undergraduate student researchers will be hosted in the PI and Co-PI’s laboratories, and a free online Quantum Optics conference will be organized.The past decades have witnessed a rapid increase in the performance of on-chip integrated photonic devices for studying nonlinear and quantum phenomena. These devices have enabled a wide range of discoveries and are serving as critical roles in our optical communications network. However, as we look to shift from classical to quantum networking, we must be mindful to engineer components that enable quantum communications and yet are compatible with the large existing infrastructure already in place for classical optical communications. An important capability in quantum networking is making quantum information, stored on optical qubits, compatible with the modern telecommunications infrastructure, which includes mapping quantum channels to the International Telecommunication Union (ITU) frequency grid. One approach being explored relies on frequency conversion using integrated optical resonant cavities. While the concept is theoretically robust, in practice, there are several hurdles related to low conversion efficiencies and optical power requirements that must be solved. While it is possible to overcome the power requirements by using a cavity with a long photon lifetime, the conversion efficiency is intrinsic to the cavity material. In the present work, we will explore a new type of hybrid optical cavity comprised of a self-assembled monolayer of nonlinear optical organic materials on a silicon oxynitride microring. Organic materials possess 1,000-100,000x higher Non-Linear Optic (NLO) coefficients than conventional optical materials; thus, the proposed hybrid system could provide a transformative solution to the current challenge. The key quantum capability of the microresonators to be validated is coherent wavelength translation of an optical state while preserving the quantum coherence of observables on which quantum information is encoded. The Si device architecture that will be studied is compatible with existing infrastructure; thus, this work will pave the way for establishing the quantum network using the existing ITU grid. Undergraduate and graduate students will be directly engaged in all aspects of the research, and all findings will be disseminated using scholarly publications as well as social media.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子网络已经成为量子信息科学领域的全球性重大挑战,被认为是实现通用量子计算及其应用的关键技术。 因此,开发可实现的设备来加速量子网络将推动美国的安全和技术领导地位。一个灵活的量子网络将有能力在房间(数据中心)、城市(LAN)、大陆和跨大陆距离上以高保真度传输任意量子态。在这个提议中,我们提供了一条量子频率转换器(QFC)的发展路径,用于将光子的波长转换为国际电信联盟(ITU)频率网格的预先分配的信道,同时保留编码在这些光子上的微妙的量子信息。 计划中的方法与硅光子技术完全兼容,为产生非经典光和该光的频率转换提供了一个可扩展的、鲁棒的、可制造的平台。培训和外联工作直接吸引科学界和公众参与。与南加州大学工程多样性中心合作,PI和Co-PI的实验室将接待两名本科生研究人员,并将组织一次免费的在线量子光学会议。过去几十年来,用于研究非线性和量子现象的片上集成光子器件的性能迅速提高。这些设备已经实现了广泛的发现,并在我们的光通信网络中发挥着关键作用。然而,当我们希望从经典网络转向量子网络时,我们必须注意设计能够实现量子通信的组件,同时与现有的大型基础设施兼容。量子网络的一个重要功能是使存储在光学量子比特上的量子信息与现代电信基础设施兼容,其中包括将量子信道映射到国际电信联盟(ITU)的频率网格。正在探索的一种方法依赖于使用集成光学谐振腔的频率转换。虽然该概念在理论上是稳健的,但在实践中,存在必须解决的与低转换效率和光功率要求相关的若干障碍。虽然可以通过使用具有长光子寿命的腔来克服功率要求,但是转换效率是腔材料固有的。在本工作中,我们将探索一种新型的混合光学腔,它由非线性光学有机材料在氮氧化硅微晶体上的自组装单层膜组成。有机材料具有比传统光学材料高1,000 -100,000倍的非线性光学(NLO)系数;因此,所提出的混合系统可以为当前的挑战提供变革性的解决方案。待验证的微谐振器的关键量子能力是光学状态的相干波长平移,同时保持量子信息编码的可观测量的量子相干性。将研究的Si器件架构与现有基础设施兼容;因此,这项工作将为使用现有ITU网格建立量子网络铺平道路。本科生和研究生将直接参与研究的各个方面,所有研究结果将通过学术出版物和社交媒体传播。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Habif其他文献

Jonathan Habif的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

低纬度边缘海颗粒有机碳的卫星遥感算法研究
  • 批准号:
    41076114
  • 批准年份:
    2010
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目
基于无线光载射频(Radio over Free Space Optics)技术的分布式天线系统关键技术研究
  • 批准号:
    60902038
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
共形光学元件内凹面的磁流变抛光技术研究
  • 批准号:
    50675116
  • 批准年份:
    2006
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目
半导体中激子的量子非线性光学的研究
  • 批准号:
    10474025
  • 批准年份:
    2004
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Nonlinear quantum optics using Rydberg excitons
使用里德堡激子的非线性量子光学
  • 批准号:
    2887904
  • 财政年份:
    2023
  • 资助金额:
    $ 37.61万
  • 项目类别:
    Studentship
Nonlinear quantum optics in integrated structures
集成结构中的非线性量子光学
  • 批准号:
    572628-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 37.61万
  • 项目类别:
    University Undergraduate Student Research Awards
Quantum measurements, quantum nonlinear optics, & quantum foundations using entangled photons and ultracold & Rydberg atoms
量子测量、量子非线性光学、
  • 批准号:
    RGPIN-2020-05767
  • 财政年份:
    2022
  • 资助金额:
    $ 37.61万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Nonlinear Optics with Cold Atoms in Optical Lattices
光学晶格中冷原子的量子非线性光学
  • 批准号:
    546105-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 37.61万
  • 项目类别:
    Postdoctoral Fellowships
Frontiers of nonlinear quantum optics: from fundamentals to technology
非线性量子光学前沿:从基础到技术
  • 批准号:
    RGPIN-2021-03029
  • 财政年份:
    2022
  • 资助金额:
    $ 37.61万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Nonlinear Optics
量子非线性光学
  • 批准号:
    CRC-2016-00034
  • 财政年份:
    2022
  • 资助金额:
    $ 37.61万
  • 项目类别:
    Canada Research Chairs
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2022
  • 资助金额:
    $ 37.61万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear and quantum optics in two-dimensional materials and nanophotonic systems
二维材料和纳米光子系统中的非线性和量子光学
  • 批准号:
    RGPIN-2020-05428
  • 财政年份:
    2022
  • 资助金额:
    $ 37.61万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear and quantum optics in two-dimensional materials and nanophotonic systems
二维材料和纳米光子系统中的非线性和量子光学
  • 批准号:
    RGPIN-2020-05428
  • 财政年份:
    2021
  • 资助金额:
    $ 37.61万
  • 项目类别:
    Discovery Grants Program - Individual
Frontiers of nonlinear quantum optics: from fundamentals to technology
非线性量子光学前沿:从基础到技术
  • 批准号:
    RGPIN-2021-03029
  • 财政年份:
    2021
  • 资助金额:
    $ 37.61万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了