Collaborative Research: Design and Discovery of Entropy-Stabilized Perovskite Halide Materials for Optoelectronics
合作研究:用于光电子学的熵稳定钙钛矿卤化物材料的设计和发现
基本信息
- 批准号:2127640
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PART 1: NON-TECHNICAL SUMMARYPerovskite halides are an exciting family of materials that can be prepared by low-temperature synthesis methods and are promising for a wide variety of optoelectronic applications. With this project, which is jointly funded by the Solid State and Materials Chemistry program and the Electronic and Photonic Materials program, both in the Division of Materials Research, a collaborative research team from the University of Maine and the University of Alabama develops, synthesizes, and investigates a new class of perovskite halides for optoelectronics. In this combined theoretical and experimental investigation, the team also evaluates the materials’ stability under ambient environmental conditions. Unlike traditional halides with two to three metal elements, these newly developed perovskite halides consist of five or more principal metal elements in nearly equal concentrations. The workplan features a closed feedback loop between theory and experiment and focuses on materials advancement by performing theoretical predictions, developing synthesis methods, characterizing optoelectronic properties, and evaluating stability under exposure to gases, light, and heat. New perovskite halide materials discovered from this project could lead to a wide variety of optoelectronic applications including solar cells, light-emitting devices, photodetectors and lasers, photoelectrochemical catalysts, radiation detectors, and sensors. This research allows project participants from interdisciplinary programs at these two universities to interact and contribute to technology development within Maine and Alabama. Three Ph.D. graduate students and six undergraduates are trained to acquire skills and competency in the three foundational pillars of computation, experiments, and data analysis which are key attributes for the next-generation workforce. STEM outreach and education activities disseminated to K-12 students, high-school teachers, and the general public within Maine and Alabama are aimed at conveying how collaborative energy-materials design-driven research is relevant to addressing societal challenges. PART 2: TECHNICAL SUMMARYThis project, which is jointly funded by the Solid State and Materials Chemistry program and the Electronic and Photonic Materials program, both in the Division of Materials Research, aims to computationally design and experimentally realize a new class of lead-free perovskite halide materials with enhanced thermodynamic and environmental stability along with desired optoelectronic properties. Entropy-stabilized perovskite halides (ESPHs) containing five or more principal metal elements are investigated for enhanced optoelectronic properties and stable environmental performance. The key hypothesis is that the configurational entropy of mixing plays a dominant role in stabilizing a single-phase crystalline ESPH structure. The validation of this hypothesis not only provides a new experimentally controllable pathway to design more stable perovskite halide materials but also yields unique composition-structure-property relationships that are absent when chemical order prevails. Specific objectives are to (i) predict the combinations of metal elements that can give rise to stable ESPHs using high-throughput first-principles calculations, (ii) synthesize the predicted ESPHs using the solid-state solution, hydrothermal, and solvent precipitation methods, (iii) characterize the compositional, structural and optoelectronic properties of the synthesized ESPHs, and (iv) evaluate and analyze the stabilities of experimentally synthesized ESPHs under various laboratory environments including humidity, oxidizing/reducing gases, and heat. New ESPHs from this project are poised to substantially expand the chemical space of perovskite halides, providing more capabilities to tune and tailor materials properties of interest (such as lattice parameter, bandgap, optical absorption strength, and conductivity) and render high potential for a wide variety of optoelectronic applications including solar cells, light-emitting devices, photoelectrochemical catalysts, photodetectors and lasers, radiation detectors, and sensors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第1部分:非技术摘要底石卤化物是一种令人兴奋的材料家族,可以通过低温合成方法制备,并有望用于多种光电应用。借助该项目,该项目由固态和材料化学计划和电子和光子材料计划共同资助,均在材料研究部,缅因州大学的合作研究团队以及阿拉巴马大学的开发项目,合成,并研究了新的Perovskite Halides for Optoelectronics。在这一合并的理论和实验投资中,团队还评估了在环境环境条件下材料的稳定性。与传统的卤化物具有两到三个金属元素不同,这些新开发的钙钛矿卤化物包括五个或更多的主要金属元素,几乎相等。工作计划具有理论和实验之间的封闭反馈回路,并通过执行理论预测,开发合成方法,表征光电特性以及在暴露于气体,光和热量的情况下评估稳定性来关注材料的发展。从该项目中发现的新钙钛矿卤化物材料可能会导致多种光电应用,包括太阳能电池,发光设备,光电探测器和激光器,光电化学催化剂,辐射探测器和传感器。这项研究使这两所大学跨学科计划的项目参与者可以互动并为缅因州和阿拉巴马州内的技术发展做出贡献。三博士研究生和六名本科生经过培训,可以在计算,实验和数据分析的三个基础支柱中获得技能和能力,这是下一代劳动力的关键属性。 STEM宣传和教育活动传播给K-12学生,高中老师以及缅因州和阿拉巴马州的公众旨在传达协作能源材料设计驱动的研究如何与解决社会挑战有关。第2部分:技术摘要项目,该项目由固态和材料化学计划以及材料研究部的电子和光子材料计划共同资助,旨在在计算设计上进行计算设计,并通过实验实现了一类新的无铅钙钛矿卤化物材料,并具有增强的热力学和环境稳定性以及所需的光电材料以及所需的光纤维电源。研究了包含五个或更多主要金属元件的熵稳定的钙钛矿卤化物(ESPHS),以增强光电特性和稳定的环境性能。关键假设是(i)预测金属元件的组合可以使用高通量的第一原理计算产生稳定的ESPH,(ii)使用固态溶液,水热和溶液降水方法和求解的降水方法((iii)(III)合成了预测的ESPH,(III)的结构和属性和属性谱系谱系和属性谱系谱图(iv)在各种实验室环境下进行实验合成的ESPH的稳定性,包括湿度,氧化/还原气体和热量。该项目的新ESPH被中毒以实质性扩大钙钛矿卤化物的化学空间,提供更多的能力来调整和量身定制感兴趣的材料特性(例如晶格参数,bandgap,bandgap,光吸收强度和电导率),并为包括多种选择的光电细胞,光仪,照明器件,照片,摄影机,光仪,摄影师,光仪,光启用器件,光仪,摄影师,光层型,光电孔,光电孔,光层,造型,赋予高潜力。激光,辐射探测器和传感器。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来诚实地通过评估来诚实地支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interfacial engineering with NiOx nanofibers as hole transport layer for carbon-based perovskite solar cells
- DOI:10.1016/j.solener.2021.10.039
- 发表时间:2021-12
- 期刊:
- 影响因子:6.7
- 作者:S. Vijayaraghavan;Jacob Wall;Harigovind G. Menon;Xiaomeng Duan;Liping Guo;A. Amin;Xiao Han;Lingyan Kong;Yufeng Zheng;Lin Li;Feng Yan
- 通讯作者:S. Vijayaraghavan;Jacob Wall;Harigovind G. Menon;Xiaomeng Duan;Liping Guo;A. Amin;Xiao Han;Lingyan Kong;Yufeng Zheng;Lin Li;Feng Yan
Solution-processed vanadium oxides as a hole-transport layer for Sb2Se3 thin-film solar cells
- DOI:10.1016/j.solener.2021.11.009
- 发表时间:2022-01
- 期刊:
- 影响因子:6.7
- 作者:Al-Robaidi Amin;Liping Guo;S. Vijayaraghavan;Dian Li;Xiaomeng Duan;Harigovind G. Menon;Jacob Wall;Subhadra Gupta;Mark Ming-Cheng Cheng-Mark-Ming-Cheng-Cheng-1399248973;Yufeng Zheng;Lin Li;Feng Yan
- 通讯作者:Al-Robaidi Amin;Liping Guo;S. Vijayaraghavan;Dian Li;Xiaomeng Duan;Harigovind G. Menon;Jacob Wall;Subhadra Gupta;Mark Ming-Cheng Cheng-Mark-Ming-Cheng-Cheng-1399248973;Yufeng Zheng;Lin Li;Feng Yan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feng Yan其他文献
Widely Tunable Single-Mode Yb-Doped All-Fiber Master Oscillator Power Amplifier
宽范围可调单模掺镱全光纤主振荡器功率放大器
- DOI:
10.1109/lpt.2015.2477896 - 发表时间:
2015-12 - 期刊:
- 影响因子:2.6
- 作者:
Hu Jinmeng;Zhang Lei;Feng Yan - 通讯作者:
Feng Yan
Origin of viscosity at individual particle level in Yukawa liquids
汤川液体中单个颗粒水平的粘度起源
- DOI:
10.1103/physrevresearch.4.033064 - 发表时间:
2022-07 - 期刊:
- 影响因子:4.2
- 作者:
Huang D.;Lu S.;Murillo M. S.;Feng Yan - 通讯作者:
Feng Yan
Mode-Locked Ho3+-Doped ZBLAN Fiber Laser at 1.2 mu m
1.2 μm 锁模 Ho3 掺杂 ZBLAN 光纤激光器
- DOI:
10.1109/jlt.2016.2599007 - 发表时间:
2016 - 期刊:
- 影响因子:4.7
- 作者:
Yang Xuezong;Zhang Lei;Feng Yan;Zhu Xiushan;Norwood R. A.;Peyghambarian N. - 通讯作者:
Peyghambarian N.
Direction of Arrival Estimation Based on Simplified Dictionary Matching Pursuit Algorithm with Rotational Invariance
基于旋转不变性简化字典匹配追踪算法的到达方向估计
- DOI:
10.1109/wcsp55476.2022.10039458 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yiming Zhao;Weiwei Xia;Guangyue He;Feng Yan;Lianfeng Shen;Yinong Zhang;Yingbin Gao - 通讯作者:
Yingbin Gao
Perovskite Solar Cell‐Gated Organic Electrochemical Transistors for Flexible Photodetectors with Ultrahigh Sensitivity and Fast Response
用于具有超高灵敏度和快速响应的柔性光电探测器的钙钛矿太阳能电池门控有机电化学晶体管
- DOI:
10.1002/adma.202207763 - 发表时间:
2022 - 期刊:
- 影响因子:29.4
- 作者:
Jiajun Song;Guanqi Tang;Jiupeng Cao;Hong Liu;Zeyu Zhao;Sophie Griggs;Anneng Yang;Naixiang Wang;Haiyang Cheng;Chun;Iain McCulloch;Feng Yan - 通讯作者:
Feng Yan
Feng Yan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feng Yan', 18)}}的其他基金
CAREER: Photovoltaic Devices with Earth-Abundant Low Dimensional Chalcogenides
职业:具有地球丰富的低维硫属化物的光伏器件
- 批准号:
2413632 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Collaborative Research: Machine Learning-assisted Ultrafast Physical Vapor Deposition of High Quality, Large-area Functional Thin Films
合作研究:机器学习辅助超快物理气相沉积高质量、大面积功能薄膜
- 批准号:
2226918 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
PFI-TT: Highly Efficient, Scalable, and Stable Carbon-based Perovskite Solar Modules
PFI-TT:高效、可扩展且稳定的碳基钙钛矿太阳能模块
- 批准号:
2329871 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Collaborative Research: Photomechanical Behavior in Photovoltaic Semiconductors
合作研究:光伏半导体中的光机械行为
- 批准号:
2330728 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2323766 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: Design and Discovery of Entropy-Stabilized Perovskite Halide Materials for Optoelectronics
合作研究:用于光电子学的熵稳定钙钛矿卤化物材料的设计和发现
- 批准号:
2330738 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
CAREER: Automated and Efficient Machine Learning as a Service
职业:自动化高效的机器学习即服务
- 批准号:
2305491 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
CAREER: Automated and Efficient Machine Learning as a Service
职业:自动化高效的机器学习即服务
- 批准号:
2048044 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
I-Corps: Printable Carbon-based Perovskite Thin Film Solar Cells
I-Corps:可印刷碳基钙钛矿薄膜太阳能电池
- 批准号:
2039883 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: Photomechanical Behavior in Photovoltaic Semiconductors
合作研究:光伏半导体中的光机械行为
- 批准号:
2019473 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
载人飞行器-地形共融多平台协作起降机构设计及容错控制研究
- 批准号:52305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于不完善信息的协作型多智能体系统设计与优化技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全感知智能力控机器人系统设计及安全人机协作控制方法研究
- 批准号:U22A2060
- 批准年份:2022
- 资助金额:255.00 万元
- 项目类别:联合基金项目
基于不完善信息的协作型多智能体系统设计与优化技术研究
- 批准号:62206091
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向人机协作的人机交互界面设计机制研究
- 批准号:72271053
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
- 批准号:
2348641 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: Meshed GNSS-Acoustic Array Design for Lower-Cost Dense Observation Fields
合作研究:用于低成本密集观测场的网状 GNSS 声学阵列设计
- 批准号:
2321297 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant