FW-HTF-P Understanding Gig Work and its Effects on Wellbeing over the Life Course in the United States: A Machine Learning Approach

FW-HTF-P 了解零工工作及其对美国一生福祉的影响:机器学习方法

基本信息

项目摘要

This project promotes the progress of science by providing a better understanding of the nature of gig work generally and electronic-platform-mediated gig work, in particular, and how this work affects the wellbeing of workers. The gig economy is of particular interest as new technologies facilitate such work more efficiently than ever before and are likely to only increase in the future. Moreover, understanding such work arrangements is crucial for fully informing policies regulating electronically-mediated gig work. However, such work arrangements are particularly hard to measure, and in turn, study, as they may not be primary employment, may not be captured in tax data or administrative records, and may not be accurately reported in standard survey questions on work. This project will overcome such deficiencies by employing a convergence of economics- and information-science-based approaches to create a new data source to study gig work arrangements and develop a plan for sustained future research.The project will use hand coding in conjunction with machine learning methods to leverage existing, but not published, survey data on narrative responses on industry and occupation, as well as employer names, in the 1996-2021 Panel Study of Income Dynamics (PSID). Such an effort will enable the production of a longitudinal dataset extending back over 25 years and use the dataset to begin to examine how the nature of gig work has changed with the introduction of electronic platforms and how those changes have affected individuals' wellbeing. The resulting dataset will be made available publicly and in a secure virtual restricted data enclave. The effort will inform the evaluation of the new gig work questions included in the 2021 PSID and aid in the development of new survey questions in ongoing data collection, on the PSID and beyond, to better understand the changing nature of work. The resulting dataset will be made available publicly and in a secure virtual restricted data enclave. It will be used to initiate and plan continuing research investigating the effects of electronically-mediated gig work on wellbeing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目通过更好地了解零工工作的性质,特别是电子平台介导的零工工作,以及这项工作如何影响工人的福祉,促进科学的进步。零工经济特别令人感兴趣,因为新技术比以往任何时候都更有效地促进了这类工作,而且未来可能只会增加。此外,了解这种工作安排对于充分了解规范电子中介零工工作的政策至关重要。然而,这种工作安排特别难以衡量,反过来,由于它们可能不是主要就业,可能无法在税务数据或行政记录中获得,并且可能无法在关于工作的标准调查问题中准确报告。该项目将通过融合经济学和信息科学的方法来创建一个新的数据源,以研究零工工作安排,并为未来的持续研究制定计划,从而克服这些缺陷。该项目将使用人工编码与机器学习方法相结合,利用现有但尚未公布的关于行业和职业以及雇主名称的叙述性回答的调查数据,1996-2021年收入动态小组研究(PSID)。这一努力将使我们能够制作一个可以追溯到25年前的纵向数据集,并利用该数据集开始研究零工工作的性质如何随着电子平台的引入而发生变化,以及这些变化如何影响个人的福祉。由此产生的数据集将在安全的虚拟受限数据飞地中公开提供。这项工作将为评估2021年PSID中包含的新的演出工作问题提供信息,并有助于在PSID及以后的持续数据收集中开发新的调查问题,以更好地了解不断变化的工作性质。由此产生的数据集将在安全的虚拟受限数据飞地中公开提供。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joelle Abramowitz其他文献

Opening the Black Box of Self-Employment: Identifying Alternative Work Arrangements in the United States
打开自营职业的黑匣子:识别美国的替代工作安排

Joelle Abramowitz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

转HTFα对脊髓继发性损伤和微循环重建的影响
  • 批准号:
    39970755
  • 批准年份:
    1999
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: FW-HTF-RL: Understanding the Ethics, Development, Design, and Integration of Interactive Artificial Intelligence Teammates in Future Mental Health Work
合作研究:FW-HTF-RL:了解未来心理健康工作中交互式人工智能队友的伦理、开发、设计和整合
  • 批准号:
    2326146
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Understanding the Ethics, Development, Design, and Integration of Interactive Artificial Intelligence Teammates in Future Mental Health Work
合作研究:FW-HTF-RL:了解未来心理健康工作中交互式人工智能队友的伦理、开发、设计和整合
  • 批准号:
    2326144
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Understanding the Ethics, Development, Design, and Integration of Interactive Artificial Intelligence Teammates in Future Mental Health Work
合作研究:FW-HTF-RL:了解未来心理健康工作中交互式人工智能队友的伦理、开发、设计和整合
  • 批准号:
    2326145
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
FW-HTF-P: Adapting to the Future of Robotic Surgery: Understanding Training and Design Environments for Human-Robot Teams
FW-HTF-P:适应机器人手术的未来:了解人机团队的培训和设计环境
  • 批准号:
    2222806
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
FW-HTF-P: Understanding and Assessing Technology Innovation to Mitigate Distraction and Improve the Performance of Future Forklift Operators
FW-HTF-P:了解和评估技术创新,以减少分心并提高未来叉车操作员的绩效
  • 批准号:
    2221942
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
FW-HTF-P: Understanding the Social and Ethical Implications of Algorithmic Decision Making by Nurses Using the Rothman Index in a Large-Scale Hospital Setting
FW-HTF-P:了解护士在大型医院环境中使用罗斯曼指数进行算法决策的社会和伦理影响
  • 批准号:
    2026607
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
FW-HTF-P: WORK WELL: Understanding the interrelationships between humans and technology to improve the quality of work life in smart buildings
FW-HTF-P:好好工作:了解人类与技术之间的相互关系,以提高智能建筑中的工作生活质量
  • 批准号:
    2026594
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
FW-HTF-RM: Collaborative Research: Understanding the Algorithmic Workplace: A Multi-Method Study for Comprehensive Optimization of Platforms
FW-HTF-RM:协作研究:理解算法工作场所:平台综合优化的多方法研究
  • 批准号:
    1928453
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
FW-HTF-RM: Collaborative Research: Understanding the Algorithmic Workplace: A Multi-Method Study for Comprehensive Optimization of Platforms
FW-HTF-RM:协作研究:理解算法工作场所:平台综合优化的多方法研究
  • 批准号:
    1928608
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
FW-HTF: Collaborative Research: Pre-Skilling Workers, Understanding Labor Force Implications and Designing Future Factory Human-Robot Workflows Using a Physical Simulation Platform
FW-HTF:协作研究:工人预培训、了解劳动力影响以及使用物理模拟平台设计未来工厂人机工作流程
  • 批准号:
    1839971
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了