Collaborative Research: SWIFT: Data Driven Learning and Optimization in Reconfigurable Intelligent Surface Enabled Industrial Wireless Network for Advanced Manufacturing
合作研究:SWIFT:先进制造可重构智能表面工业无线网络中的数据驱动学习和优化
基本信息
- 批准号:2128482
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The next generation of smart factories needs a high-quality and reliable wireless network that can support extensive information exchange between coexisted distributed sensors and machines. However, traditional wireless network techniques cannot be directly applied to manufacturing factories due to their stringent latency and reliability requirements in confined factory space, uncertain wireless environment, and unknown disturbance or interference, as well as security concerns. On the other hand, the emerging reconfigurable intelligent surface (RIS) technique is a promising solution to significantly enhance the quality (e.g. latency reduction, reliability improvement, etc.) of traditional wireless networks and provide security especially under a complex dynamic wireless environment such as manufacturing factories. Therefore, the goal of this project is to provide a novel framework of hardware-driven online learning and optimization of RIS-enhanced industrial wireless networks. To achieve this goal, the proposed research will provide critical components in facilitating the reliable and optimal design of industrial wireless networks for both stationary and mobile users and fostering their adoption. The research is also complemented by a comprehensive educational plan including curriculum development, lab enhancements, as well as involving undergraduate and graduate students in research. Diverse outreach activities have been planned to engage K-12 and underrepresented students from two HBCUs, one MSI, and other institutions. This research will develop foundational analytical and experimental approaches for reconfigurable intelligent surface (RIS) hardware-driven cross-layer optimization and data-enabled online learning algorithm development. The project will provide several novel contributions, including 1) A new type of hardware-driven cross-layer optimization for the RIS-assisted industrial wireless network under unknown disturbance, 2) A novel real-time data-enabled learning approach that can solve the complex cross-layer optimization under harsh constraints, 3) A robust and computationally efficient learning framework that can optimize the large scale RIS-enhanced wireless network in a distributed fashion, and 4) Design and fabrication of a RIS unit that supports a dynamic beam steering capability, as well as a hardware testbed for evaluating the developed RIS-enhanced industrial wireless network in practical settings. Moreover, this project will lead a new direction in industrial wireless network optimization, machine learning, and resilient computing and further pave the way for real-time learning-based optimization development and implementation. The proposed research will contribute to future wireless revolution and advanced manufacturing which are of national priority.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
下一代智能工厂需要一个高质量、可靠的无线网络,能够支持共存的分布式传感器和机器之间的广泛信息交换。然而,传统的无线网络技术不能直接应用于制造工厂,因为它们在受限的工厂空间、不确定的无线环境、未知的干扰或干扰以及安全方面的严格的延迟和可靠性要求。另一方面,新兴的可重构智能表面(RIS)技术是一种很有前途的解决方案,可以显著提高质量(如减少延迟、提高可靠性等)。并提供安全性,特别是在复杂的动态无线环境下,如制造工厂。因此,本项目的目标是为RIS增强的工业无线网络提供一种硬件驱动的在线学习和优化的新框架。为了实现这一目标,拟议的研究将提供关键组成部分,以促进为固定和移动用户可靠和最佳地设计工业无线网络,并促进其采用。这项研究还得到了一项全面的教育计划的补充,包括课程开发、实验室增强,以及让本科生和研究生参与研究。已计划开展不同的外联活动,以吸引来自两所HBCU、一所MSI和其他机构的K-12和代表性不足的学生。这项研究将为可重构智能表面(RIS)硬件驱动的跨层优化和数据使能的在线学习算法开发开发基础的分析和实验方法。该项目将提供几个新的贡献,包括1)一种新型的硬件驱动的跨层优化RIS辅助的工业无线网络在未知干扰下,2)一种新的实时数据使能学习方法可以解决苛刻约束下的复杂的跨层优化问题,3)一个健壮的和计算高效的学习框架,可以以分布式的方式优化大规模RIS增强的无线网络,以及4)设计和制造支持动态波束控制能力的RIS单元,以及用于在实际环境中评估所开发的RIS增强的工业无线网络的硬件试验台。此外,该项目将引领工业无线网络优化、机器学习和弹性计算的新方向,进一步为基于实时学习的优化开发和实施铺平道路。这项拟议的研究将有助于国家优先考虑的未来无线革命和先进制造。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reinforcement Learning based Optimal Dynamic Resource Allocation for RIS-aided MIMO Wireless Network with Hardware Limitations
基于强化学习的 RIS 辅助硬件限制 MIMO 无线网络最优动态资源分配
- DOI:10.1109/icnc57223.2023.10074116
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zhang, Yuzhu;Qian, Lijun;Eroglu, Abdullah;Yang, Binbin;Xu, Hao
- 通讯作者:Xu, Hao
Federated Spectrum Learning for Reconfigurable Intelligent Surfaces-Aided Wireless Edge Networks
- DOI:10.1109/twc.2022.3178445
- 发表时间:2022-05
- 期刊:
- 影响因子:10.4
- 作者:Bofu Yang;Xuelin Cao;Chongwen Huang;C. Yuen;M. D. Renzo;Yong Liang Guan;D. Niyato;Lijun Qian;M. Debbah
- 通讯作者:Bofu Yang;Xuelin Cao;Chongwen Huang;C. Yuen;M. D. Renzo;Yong Liang Guan;D. Niyato;Lijun Qian;M. Debbah
Joint Optimal Placement and Dynamic Resource Allocation for multi-UAV Enhanced Reconfigurable Intelligent Surface Assisted Wireless Network
多无人机增强可重构智能地面辅助无线网络联合优化布局与动态资源分配
- DOI:10.1109/ccnc51644.2023.10059677
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zhang, Yuzhu;Qian, Lijun;Xu, Hao
- 通讯作者:Xu, Hao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lijun Qian其他文献
Comprehensive Validation on Reweighting Samples for Bias Mitigation via AIF360
通过 AIF360 重新加权样本以减轻偏差的综合验证
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Christina Hastings Blow;Lijun Qian;Camille Gibson;Pamela Obiomon;Xishuang Dong - 通讯作者:
Xishuang Dong
Auxiliary frequency and voltage regulation in microgrid via intelligent electric vehicle charging
通过智能电动汽车充电实现微电网的辅助频率和电压调节
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Nan Zou;Lijun Qian;Husheng Li - 通讯作者:
Husheng Li
Design and analysis of a pseudo-active suspension
一种伪主动悬架的设计与分析
- DOI:
10.1016/j.ymssp.2025.112502 - 发表时间:
2025-04-15 - 期刊:
- 影响因子:8.900
- 作者:
Wuhan Qiu;Xianxu ’Frank’ Bai;Chengxi Li;Lijun Qian;Anding Zhu;Yunfei Wu - 通讯作者:
Yunfei Wu
Experimental Study of a Ka Band Gyro-TWT with the Mode-Selective Circuits
- DOI:
10.1007/s10762-010-9717-x - 发表时间:
2010-10-07 - 期刊:
- 影响因子:2.500
- 作者:
Bentian Liu;Efeng Wang;Lijun Qian;Zhiliang Li;Jinjun Feng - 通讯作者:
Jinjun Feng
Plasticization of gelatin/chitosan films with deep eutectic solvents and addition of emFlos Sophora Immaturus/em extracts for high antioxidant and antimicrobial
用深共熔溶剂对明胶/壳聚糖薄膜进行增塑,并添加苦豆子提取物以获得高抗氧化和抗菌性能
- DOI:
10.1016/j.foodhyd.2024.110752 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:12.400
- 作者:
Quanling Zhao;Xi Huang;Lijun Qian;Ningjing Sun;Juan Yang;Jialong Wen;Han Li;Jisheng Yang;Liuting Mo;Wei Gao;Zhiyong Qin - 通讯作者:
Zhiyong Qin
Lijun Qian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lijun Qian', 18)}}的其他基金
MRI: Acquisition and Development of Mobile Edge Computing Equipment for Research and Education of Big Data Analytics with Applications in Smart Grid at PVAMU
MRI:采购和开发移动边缘计算设备,用于 PVAMU 智能电网应用大数据分析的研究和教育
- 批准号:
2018945 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
HBCU-RISE: Bridging Quantitative Science with Biological Research: Jumpstarting Computational Systems Biology Research at PVAMU
HBCU-RISE:将定量科学与生物学研究联系起来:在 PVAMU 启动计算系统生物学研究
- 批准号:
1736196 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Research Initiation Award Grant: Modeling and Control Genetic Regulations in Biological Networks using Advanced Signal Processing and Control Theory
研究启动奖资助:利用先进信号处理和控制理论对生物网络中的遗传调控进行建模和控制
- 批准号:
1238918 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
MRI:Acquisition: A Software-Defined Radio Based Testbed for Next Generation Wireless Networks Research
MRI:采集:用于下一代无线网络研究的基于软件定义无线电的测试台
- 批准号:
1040207 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
- 批准号:
2332661 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
- 批准号:
2332722 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
- 批准号:
2332721 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
- 批准号:
2332662 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
- 批准号:
2229471 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
- 批准号:
2229473 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: Facilitating Novel Modalities for Spectrum Sharing between Earth-Observing Microwave Radiometers and Commercial Users
合作研究:SWIFT:促进地球观测微波辐射计和商业用户之间频谱共享的新模式
- 批准号:
2229103 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: Nonlinear and Inseparable Radar And Data (NIRAD) Transmission Framework for Pareto Efficient Spectrum Access in Future Wireless Networks
合作研究:SWIFT:未来无线网络中帕累托高效频谱接入的非线性不可分离雷达和数据 (NIRAD) 传输框架
- 批准号:
2348826 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: Data Driven Learning and Optimization in Reconfigurable Intelligent Surface Enabled Industrial Wireless Network for Advanced Manufacturing
合作研究:SWIFT:先进制造可重构智能表面工业无线网络中的数据驱动学习和优化
- 批准号:
2414946 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: Facilitating Novel Modalities for Spectrum Sharing between Earth-Observing Microwave Radiometers and Commercial Users
合作研究:SWIFT:促进地球观测微波辐射计和商业用户之间频谱共享的新模式
- 批准号:
2229104 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant