Collaborative Research: SWIFT: Data Driven Learning and Optimization in Reconfigurable Intelligent Surface Enabled Industrial Wireless Network for Advanced Manufacturing
合作研究:SWIFT:先进制造可重构智能表面工业无线网络中的数据驱动学习和优化
基本信息
- 批准号:2128656
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The next generation of smart factories needs a high-quality and reliable wireless network that can support extensive information exchange between coexisted distributed sensors and machines. However, traditional wireless network techniques cannot be directly applied to manufacturing factories due to their stringent latency and reliability requirements in confined factory space, uncertain wireless environment, and unknown disturbance or interference, as well as security concerns. On the other hand, the emerging reconfigurable intelligent surface (RIS) technique is a promising solution to significantly enhance the quality (e.g. latency reduction, reliability improvement, etc.) of traditional wireless networks and provide security especially under a complex dynamic wireless environment such as manufacturing factories. Therefore, the goal of this project is to provide a novel framework of hardware-driven online learning and optimization of RIS-enhanced industrial wireless networks. To achieve this goal, the proposed research will provide critical components in facilitating the reliable and optimal design of industrial wireless networks for both stationary and mobile users and fostering their adoption. The research is also complemented by a comprehensive educational plan including curriculum development, lab enhancements, as well as involving undergraduate and graduate students in research. Diverse outreach activities have been planned to engage K-12 and underrepresented students from two HBCUs, one MSI, and other institutions. This research will develop foundational analytical and experimental approaches for reconfigurable intelligent surface (RIS) hardware-driven cross-layer optimization and data-enabled online learning algorithm development. The project will provide several novel contributions, including 1) A new type of hardware-driven cross-layer optimization for the RIS-assisted industrial wireless network under unknown disturbance, 2) A novel real-time data-enabled learning approach that can solve the complex cross-layer optimization under harsh constraints, 3) A robust and computationally efficient learning framework that can optimize the large scale RIS-enhanced wireless network in a distributed fashion, and 4) Design and fabrication of a RIS unit that supports a dynamic beam steering capability, as well as a hardware testbed for evaluating the developed RIS-enhanced industrial wireless network in practical settings. Moreover, this project will lead a new direction in industrial wireless network optimization, machine learning, and resilient computing and further pave the way for real-time learning-based optimization algorithms. The proposed research will contribute to future wireless revolution and advanced manufacturing which are of national priority.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
下一代智能工厂需要一个高质量和可靠的无线网络,可以支持共存的分布式传感器和机器之间的广泛信息交换。然而,传统的无线网络技术不能直接应用于制造工厂,由于其严格的延迟和可靠性要求,在有限的工厂空间,不确定的无线环境,和未知的干扰或干扰,以及安全问题。另一方面,新兴的可重构智能表面(RIS)技术是一种有前途的解决方案,以显着提高质量(例如,延迟减少,可靠性提高等)。并提供安全性,特别是在复杂的动态无线环境下,如制造工厂。因此,本项目的目标是提供一个新的硬件驱动的在线学习和优化的RIS增强型工业无线网络的框架。为了实现这一目标,拟议的研究将提供关键组件,促进工业无线网络的可靠和优化设计的固定和移动的用户,并促进其采用。该研究还辅之以全面的教育计划,包括课程开发,实验室增强,以及参与研究的本科生和研究生。已计划开展各种外联活动,以吸引K-12和来自两个HBCU,一个MSI和其他机构的代表性不足的学生。 本研究将为可重构智能表面(RIS)硬件驱动的跨层优化和数据支持的在线学习算法开发基础分析和实验方法。该项目将提供几个新的贡献,包括1)一种新型的硬件驱动的跨层优化,用于未知干扰下的RIS辅助工业无线网络,2)一种新型的实时数据支持的学习方法,可以解决苛刻约束下的复杂跨层优化,3)鲁棒且计算高效的学习框架,其可以以分布式方式优化大规模RIS增强的无线网络,以及4)设计和制造支持动态波束控制能力的RIS单元,以及用于在实际设置中评估所开发的RIS增强型工业无线网络的硬件测试平台。此外,该项目将引领工业无线网络优化、机器学习和弹性计算的新方向,并进一步为基于实时学习的优化算法铺平道路。这项研究将有助于未来的无线革命和先进制造业,这是国家的优先事项。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的知识价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reinforcement Learning based Optimal Dynamic Resource Allocation for RIS-aided MIMO Wireless Network with Hardware Limitations
基于强化学习的 RIS 辅助硬件限制 MIMO 无线网络最优动态资源分配
- DOI:10.1109/icnc57223.2023.10074116
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zhang, Yuzhu;Qian, Lijun;Eroglu, Abdullah;Yang, Binbin;Xu, Hao
- 通讯作者:Xu, Hao
Optimal Resource Allocation for Reconfigurable Intelligent Surface Assisted Dynamic Wireless Network via Online Reinforcement Learning
- DOI:10.1109/seconworkshops56311.2022.9926399
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Yuzhu Zhang;Hao Xu
- 通讯作者:Yuzhu Zhang;Hao Xu
Data-Enabled Learning based Intelligent Resource Allocation for Multi-RIS Assisted Dynamic Wireless Network
基于数据支持学习的多RIS辅助动态无线网络智能资源分配
- DOI:10.1109/gcwkshps56602.2022.10008775
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhang, Yuzhu;Xu, Hao
- 通讯作者:Xu, Hao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hao Xu其他文献
Re-Evaluation of the Taxonomic Status of Campylopus longigemmatus (Leucobryaceae, Bryophyta)
Campylopus longigemmatus(Leucobryaceae,苔藓植物)分类地位的重新评估
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0.7
- 作者:
Wenzhen Huang;Hao Xu;Chao Shen;You;Zhi;Rui - 通讯作者:
Rui
Genesis of the South Zhuguang Uranium Ore Field, South China: Pb Isotopic Compositions and Mineralization Ages
华南诸光南铀矿田成因:Pb同位素组成及成矿时代
- DOI:
10.1111/rge.12184 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Chuang Zhang;Yu;Qian Dong;Hao Xu - 通讯作者:
Hao Xu
Experimental investigations on ferroelectric dielectric breakdown in sub-10 nm Hf0.5Zr0.5O2 film through comprehensive TDDB characterizations
通过全面的 TDDB 表征对亚 10 nm Hf0.5Zr0.5O2 薄膜中的铁电介电击穿进行实验研究
- DOI:
10.35848/1347-4065/ac8aea - 发表时间:
2022-10 - 期刊:
- 影响因子:1.5
- 作者:
Xiaopeng Li;Wei Wei;Jixuan Wu;Lu Tai;Xuepeng Zhan;Weiqiang Zhang;Mingfeng Tang;Guoqing Zhao;Hao Xu;Junshuai Chai;Xiaolei Wang;Masaharu Kobayashi;Jiezhi Chen - 通讯作者:
Jiezhi Chen
Accuracy of autofluorescence in diagnosing oral squamous cell carcinoma and oral potentially malignant disorders: a comparative study with aero-digestive lesions
自发荧光诊断口腔鳞状细胞癌和口腔潜在恶性疾病的准确性:与呼吸消化性病变的比较研究
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:4.6
- 作者:
Xiaobo Luo;Hao Xu;Mingjing He;Qi Han;Hui Wang;Chong;Jing Li;Lu Jiang;Yu Zhou;H. Dan;Xiaodong Feng;X. Zeng;Qianming Chen - 通讯作者:
Qianming Chen
Genetic Polymorphisms and Adverse Events on Unbound Imatinib and Its Active Metabolite Concentration in Patients With Gastrointestinal Stromal Tumors
胃肠道间质瘤患者未结合伊马替尼及其活性代谢物浓度的基因多态性和不良事件
- DOI:
10.3389/fphar.2019.00854 - 发表时间:
2019-07 - 期刊:
- 影响因子:5.6
- 作者:
Yi Qian;Lu-Ning Sun;Yang-Jie Liu;Qiang Zhang;Jianghao Xu;Zeng-Qing Ma;Xue-Hui Zhang;Hao Xu;Yong-Qing Wang - 通讯作者:
Yong-Qing Wang
Hao Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hao Xu', 18)}}的其他基金
CAREER: Toward Hierarchical Game Theory and Hybrid Learning Framework for Safe, Efficient Large-scale Multi-agent Systems
职业:面向安全、高效的大规模多智能体系统的分层博弈论和混合学习框架
- 批准号:
2144646 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
SusChEM: Harnessing Stable Peroxides for Selective Nitrogen Atom and Fluoroalkyl Transfer
SusChEM:利用稳定的过氧化物进行选择性氮原子和氟烷基转移
- 批准号:
2200040 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
I-Corps: Advanced traffic systems and traffic analysis using light detection and ranging (LiDAR) sensors on the roadside
I-Corps:使用路边光检测和测距 (LiDAR) 传感器的先进交通系统和交通分析
- 批准号:
2135414 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SusChEM: Harnessing Stable Peroxides for Selective Nitrogen Atom and Fluoroalkyl Transfer
SusChEM:利用稳定的过氧化物进行选择性氮原子和氟烷基转移
- 批准号:
1800405 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
- 批准号:
2332661 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
- 批准号:
2332722 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
- 批准号:
2332721 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
- 批准号:
2332662 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
- 批准号:
2229471 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
- 批准号:
2229473 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: Facilitating Novel Modalities for Spectrum Sharing between Earth-Observing Microwave Radiometers and Commercial Users
合作研究:SWIFT:促进地球观测微波辐射计和商业用户之间频谱共享的新模式
- 批准号:
2229103 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: Nonlinear and Inseparable Radar And Data (NIRAD) Transmission Framework for Pareto Efficient Spectrum Access in Future Wireless Networks
合作研究:SWIFT:未来无线网络中帕累托高效频谱接入的非线性不可分离雷达和数据 (NIRAD) 传输框架
- 批准号:
2348826 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: Data Driven Learning and Optimization in Reconfigurable Intelligent Surface Enabled Industrial Wireless Network for Advanced Manufacturing
合作研究:SWIFT:先进制造可重构智能表面工业无线网络中的数据驱动学习和优化
- 批准号:
2414946 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: Facilitating Novel Modalities for Spectrum Sharing between Earth-Observing Microwave Radiometers and Commercial Users
合作研究:SWIFT:促进地球观测微波辐射计和商业用户之间频谱共享的新模式
- 批准号:
2229104 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant