Collaborative Research: CISE-MSI: RPEP: III: celtSTEM Research Collaborative: Catapulting MSI Faculty and Students into Computational Research.
合作研究:CISE-MSI:RPEP:III:celtSTEM 研究合作:将 MSI 教师和学生推向计算研究。
基本信息
- 批准号:2131293
- 负责人:
- 金额:$ 70.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-11-01 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).As datasets have grown in size and complexity, the data they contain are essential for advancing scientific discoveries. Computational methods such as machine learning and data mining play a key role in facilitating the analysis of large datasets. However, the tools used to store and manage datasets and the tools used for machine learning are largely separate and treat data differently. Machine learning algorithms for data that has a network structure, in which a key feature of the data is relationships between items in the network, are also less well-developed compared to machine learning algorithms that treat items independently. This project will advance network-based machine learning algorithms, developing new approaches that are well-matched to common database technologies and apply them to solve foundational problems in biology including genome and proteome sequences. The project will also develop a long-term computational research initiative at the lead institution, which is a Minority Serving Institution (MSI), through working with a research-intensive organization along with industry and government partners, to implement strategies for preparing MSI students and faculty to excel in computational research.The machine learning methods portion of the project will scale neural computations to huge graphs using graph neural networks. Current approaches are limited because of problems scaling to very large graphs and effectively distributing computations across multiple machines. The approach focuses on leveraging relational database technologies, which are ideally situated to overcome these limitations due to the close link between graphs and relations and the rich set of tools they already possess for optimizing computation across large datasets. The tools developed will be used to help solve foundational problems in biology, focusing on two projects. The first involves machine learning-aided search of large protein databases for unique sequence patterns, developing new high-dimensional data encodings and graph-based algorithms to facilitate evolutionary, structural, functional, and ontological searches. The second involves analysis of metagenomic data to identify viruses (and variants) carried by mosquitos, developing novel graph encodings of mosquitos’ DNA and RNA along with machine learning-based analyses of them to analyze nucleic acid sequence data and expand the understanding of the viral collections carried by insects that interact closely with human populations. The research will be carried out in close collaboration between the lead university partners, who will develop coursework, team structures and practices, and mentoring approaches that provide a framework in which MSI students and faculty can gain both research skills and opportunities. This capacity-building work will be guided by a situated learning pedagogy and a socio-technical lens that emphasizes context and relationships between people and technology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金来自《2021年美国救援计划法案》(公法117-2)。随着数据集的规模和复杂性不断增长,其中包含的数据对推进科学发现至关重要。机器学习和数据挖掘等计算方法在促进大数据集的分析方面发挥着关键作用。然而,用于存储和管理数据集的工具和用于机器学习的工具在很大程度上是分开的,并以不同的方式对待数据。与单独处理项目的机器学习算法相比,针对具有网络结构的数据的机器学习算法也开发得较差。在网络结构中,数据的一个关键特征是网络中项目之间的关系。该项目将推进基于网络的机器学习算法,开发与常见数据库技术相匹配的新方法,并将其应用于解决生物学中的基本问题,包括基因组和蛋白质组序列。该项目还将在牵头机构少数民族服务机构(MSI)开发一个长期的计算研究计划,通过与研究密集型组织以及行业和政府合作伙伴合作,实施战略,使MSI的学生和教职员工在计算研究方面脱颖而出。该项目的机器学习方法部分将使用图形神经网络将神经计算扩展到巨大的图形。当前的方法受到限制,因为无法扩展到非常大的图形,并且无法在多台机器上有效地分配计算。这种方法的重点是利用关系数据库技术,这些技术非常适合于克服这些限制,因为图形和关系之间的紧密联系,以及它们已经拥有的用于优化大型数据集的计算的丰富工具集。开发的工具将用于帮助解决生物学的基本问题,重点是两个项目。第一个涉及机器学习--在大型蛋白质数据库中搜索独特的序列模式,开发新的高维数据编码和基于图形的算法,以促进进化、结构、功能和本体搜索。第二项涉及分析元基因组数据以识别蚊子携带的病毒(和变种),开发蚊子DNA和RNA的新图形编码,以及基于机器学习的分析,以分析核酸序列数据,并扩大对与人类种群密切互动的昆虫携带的病毒集合的理解。这项研究将在主要大学合作伙伴之间密切合作进行,他们将制定课程作业、团队结构和实践,以及提供框架的指导方法,在这种框架中,MSI学生和教师可以获得研究技能和机会。这项能力建设工作将以情境学习教学法和强调背景以及人与技术之间的关系的社会技术视角为指导。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Monroy其他文献
Toward a New Approach to the Evaluation of a Digital Curriculum Using Learning Analytics
使用学习分析评估数字课程的新方法
- DOI:
10.1080/15391523.2015.999639 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
V. Rangel;Elizabeth R. Bell;Carlos Monroy;Reid Whitaker - 通讯作者:
Reid Whitaker
STEMscopes: contextualizing learning analytics in a K-12 science curriculum
STEMscopes:K-12 科学课程中的学习分析情境化
- DOI:
10.1145/2460296.2460339 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Carlos Monroy;V. Rangel;Reid Whitaker - 通讯作者:
Reid Whitaker
Thymic Cyst Presenting as Horner's Syndrome
- DOI:
10.1378/chest.101.4.1170 - 发表时间:
1992-04-01 - 期刊:
- 影响因子:
- 作者:
Guadalupe Fraile;José Luis Rodriguez-Garcia;Carlos Monroy;Luis Fogue;Josée María Millan - 通讯作者:
Josée María Millan
Using an ontology and a multilingual glossary for enhancing the nautical archaeology digital library
使用本体论和多语言术语表来增强航海考古数字图书馆
- DOI:
10.1145/1816123.1816162 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Carlos Monroy;R. Furuta;F. Castro - 通讯作者:
F. Castro
Hypersplenism caused by an accessory spleen mimicking an intra-abdominal neoplasm: Report of a case
- DOI:
10.1007/s00595-008-3919-z - 发表时间:
2009-09-24 - 期刊:
- 影响因子:1.600
- 作者:
Jaime Ruiz-Tovar;Emilio Ripalda;Rafael Beni;Jose Nistal;Carlos Monroy;Pedro Carda - 通讯作者:
Pedro Carda
Carlos Monroy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CISE: Large: Cross-Layer Resilience to Silent Data Corruption
协作研究:CISE:大型:针对静默数据损坏的跨层弹性
- 批准号:
2321492 - 财政年份:2023
- 资助金额:
$ 70.22万 - 项目类别:
Continuing Grant
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
- 批准号:
2321531 - 财政年份:2023
- 资助金额:
$ 70.22万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: 2023 CISE Education and Workforce PI and Community Meeting
协作研究:会议:2023 年 CISE 教育和劳动力 PI 和社区会议
- 批准号:
2318593 - 财政年份:2023
- 资助金额:
$ 70.22万 - 项目类别:
Standard Grant
Collaborative Research: Conference: 2023 CISE Education and Workforce PI and Community Meeting
协作研究:会议:2023 年 CISE 教育和劳动力 PI 和社区会议
- 批准号:
2318592 - 财政年份:2023
- 资助金额:
$ 70.22万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RCBP-ED: CCRI: TechHouse Partnership to Increase the Computer Engineering Research Expansion at Morehouse College
合作研究:CISE-MSI:RCBP-ED:CCRI:TechHouse 合作伙伴关系,以促进莫尔豪斯学院计算机工程研究扩展
- 批准号:
2318703 - 财政年份:2023
- 资助金额:
$ 70.22万 - 项目类别:
Standard Grant
Collaborative Research: CISE: Large: Cross-Layer Resilience to Silent Data Corruption
协作研究:CISE:大型:针对静默数据损坏的跨层弹性
- 批准号:
2321490 - 财政年份:2023
- 资助金额:
$ 70.22万 - 项目类别:
Continuing Grant
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
- 批准号:
2321532 - 财政年份:2023
- 资助金额:
$ 70.22万 - 项目类别:
Continuing Grant
Collaborative Research: CISE: Large: Systems Support for Run-Anywhere Serverless
协作研究:CISE:大型:对 Run-Anywhere Serverless 的系统支持
- 批准号:
2321725 - 财政年份:2023
- 资助金额:
$ 70.22万 - 项目类别:
Continuing Grant
Collaborative Research: CISE-MSI: RCBP-RF: CPS: Socially Informed Traffic Signal Control for Improving Near Roadway Air Quality
合作研究:CISE-MSI:RCBP-RF:CPS:用于改善附近道路空气质量的社会知情交通信号控制
- 批准号:
2318696 - 财政年份:2023
- 资助金额:
$ 70.22万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: OAC: Integrated and Extensible Platform for Rethinking the Security of AI-assisted UAV Paradigm
合作研究:CISE-MSI:DP:OAC:重新思考人工智能辅助无人机范式安全性的集成和可扩展平台
- 批准号:
2318711 - 财政年份:2023
- 资助金额:
$ 70.22万 - 项目类别:
Standard Grant