Real-Time Prognostics of Lithium-ion Batteries in Electric Unmanned Aerial Vehicles

电动无人机中锂离子电池的实时预测

基本信息

项目摘要

Due to high energy and power density, high voltage capacity, and light weight, Lithium-ion batteries are becoming the primary source of power propulsion for electric unmanned aerial vehicles. Battery performance usually degrade due to electrochemical reactions, also known as battery aging. Battery aging could result in capacity fade and even catastrophic failure. Therefore, real-time battery health management is crucial to the safety and reliability of electric unmanned aerial vehicles. The limitations of existing battery health management techniques include (1) few battery health management techniques can achieve real-time prediction of discharge capacity and end-of-discharge because existing techniques require condition monitoring data in charge cycles, which are not always available during flight; (2) current battery health management techniques are effective only under simple, fixed flight plans and constant payloads. Effective real-time battery health management techniques will make a significant impact on not only the aerospace but also healthcare, automotive, defense, and logistics industries where batteries have a wide range of applications. The objective of the proposed research is to develop a novel battery health management technique that enables real-time prediction of discharge capacity and end-of-discharge of Lithium-ion batteries in electric unmanned aerial vehicles. Specifically, a novel computational framework that combines two deep learning algorithms will be developed. One deep learning algorithm predicts discharge capacity by extracting spatial correlations between discharge cycles; the other predicts end-of-discharge by capturing temporal dependencies within a discharge cycle. In addition, an optimal transport-based domain adaptation technique will be developed to predict discharge capacity and end-of-discharge under varying flight plans and payloads through the transfer of knowledge across flight plans and payloads. The proposed real-time battery health management technique will be validated using experimental data collected from electric unmanned aerial vehicles. The proposed research will advance the field of battery health management by answering the following research questions: (1) Can discharge capacity and end-of-discharge of Lithium-ion batteries be predicted in real-time using condition monitoring data collected in discharge cycles only during flight? (2) Can knowledge gained on discharge capacity and end-of-discharge of Lithium-ion batteries under one flight plan and payload be used to predict discharge capacity and end-of-discharge under another flight plan and payload?This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
锂离子电池具有能量和功率密度高、电压容量大、重量轻等优点,正成为电动无人机的主要动力来源。电池性能通常会由于电化学反应而降低,也称为电池老化。电池老化可能会导致容量衰减,甚至灾难性的故障。因此,电池健康状况的实时管理对电动无人机的安全可靠性至关重要。现有电池健康管理技术的局限性包括:(1)很少有电池健康管理技术能够实现放电容量和放电结束的实时预测,因为现有技术需要充电周期中的状态监测数据,而这些数据在飞行过程中并不总是可用的;(2)当前的电池健康管理技术仅在简单、固定的飞行计划和恒定有效载荷下有效。有效的实时电池健康管理技术不仅将对航空航天行业产生重大影响,还将对电池应用广泛的医疗、汽车、国防和物流行业产生重大影响。这项研究的目的是开发一种新的电池健康管理技术,能够实时预测电动无人机中锂离子电池的放电容量和放电结束时间。具体地说,将开发一种结合两种深度学习算法的新型计算框架。一种深度学习算法通过提取放电周期之间的空间相关性来预测放电容量;另一种通过捕获放电周期内的时间相关性来预测放电结束。此外,将开发一种基于运输的最佳领域适应技术,通过在飞行计划和有效载荷之间传递知识,预测不同飞行计划和有效载荷下的卸货能力和卸货结束时间。所提出的实时电池健康管理技术将使用从电动无人机收集的实验数据进行验证。这项拟议的研究将通过回答以下研究问题来推进电池健康管理领域:(1)只能在飞行期间使用在放电周期中收集的状态监测数据来实时预测锂离子电池的放电容量和放电结束时间?(2)在一个飞行计划和有效载荷下获得的锂离子电池放电容量和放电结束时间的知识是否可以用于预测另一飞行计划和有效载荷下的放电容量和放电结束时间?该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisms
  • DOI:
    10.1016/j.ress.2022.108947
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yupeng Wei;Dazhong Wu
  • 通讯作者:
    Yupeng Wei;Dazhong Wu
Battery health management using physics-informed machine learning: Online degradation modeling and remaining useful life prediction
  • DOI:
    10.1016/j.ymssp.2022.109347
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Junchuan Shi;Alexis Rivera;Dazhong Wu
  • 通讯作者:
    Junchuan Shi;Alexis Rivera;Dazhong Wu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dazhong Wu其他文献

A generic physics-informed machine learning framework for battery remaining useful life prediction using small early-stage lifecycle data
一种基于通用物理信息的机器学习框架,用于利用早期少量生命周期数据预测电池剩余使用寿命
  • DOI:
    10.1016/j.apenergy.2025.125314
  • 发表时间:
    2025-04-15
  • 期刊:
  • 影响因子:
    11.000
  • 作者:
    Weikun Deng;Hung Le;Khanh T.P. Nguyen;Christian Gogu;Kamal Medjaher;Jérôme Morio;Dazhong Wu
  • 通讯作者:
    Dazhong Wu
Digital Design and Manufacturing on the Cloud: A Review of Software and Services – RETRACTION
云上的数字设计和制造:软件和服务回顾 – 撤回
Preventive Maintenance for Mortgage Loans of Low-Income Borrowers
低收入借款人抵押贷款的预防性维护
Sheet resistance prediction of laser induced graphitic carbon with transformer encoder-enabled contrastive learning
通过变压器编码器支持的对比学习来预测激光诱导石墨碳的薄层电阻
Interfacial adhesion between dissimilar thermoplastics fabricated via material extrusion-based multi-material additive manufacturing
通过基于材料挤出的多材料增材制造制造的异种热塑性塑料之间的界面粘附性
  • DOI:
    10.1016/j.matdes.2025.113688
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    7.900
  • 作者:
    Felix Richter;Dazhong Wu
  • 通讯作者:
    Dazhong Wu

Dazhong Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
  • 批准号:
    82360504
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
  • 批准号:
    82305023
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
  • 批准号:
    62171167
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
  • 批准号:
    31971706
  • 批准年份:
    2019
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
Time-of-Flight深度相机多径干扰问题的研究
  • 批准号:
    61901435
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
建筑工程计划中Time Buffer 的形成和分配 – 工程项目管理中的社会性研究
  • 批准号:
    71671098
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
光学Parity-Time对称系统中破坏点的全光调控特性研究
  • 批准号:
    11504059
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 34.51万
  • 项目类别:
    Studentship
Diffractometer for time-resolved in-situ high temperature powder diffraction and X-ray reflectivity
用于时间分辨原位高温粉末衍射和 X 射线反射率的衍射仪
  • 批准号:
    530760073
  • 财政年份:
    2024
  • 资助金额:
    $ 34.51万
  • 项目类别:
    Major Research Instrumentation
HoloSurge: Multimodal 3D Holographic tool and real-time Guidance System with point-of-care diagnostics for surgical planning and interventions on liver and pancreatic cancers
HoloSurge:多模态 3D 全息工具和实时指导系统,具有护理点诊断功能,可用于肝癌和胰腺癌的手术规划和干预
  • 批准号:
    10103131
  • 财政年份:
    2024
  • 资助金额:
    $ 34.51万
  • 项目类别:
    EU-Funded
Big time crystals: a new paradigm in condensed matter
大时间晶体:凝聚态物质的新范例
  • 批准号:
    DP240101590
  • 财政年份:
    2024
  • 资助金额:
    $ 34.51万
  • 项目类别:
    Discovery Projects
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
  • 批准号:
    2317251
  • 财政年份:
    2024
  • 资助金额:
    $ 34.51万
  • 项目类别:
    Standard Grant
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
  • 批准号:
    2337987
  • 财政年份:
    2024
  • 资助金额:
    $ 34.51万
  • 项目类别:
    Continuing Grant
CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
  • 批准号:
    2338792
  • 财政年份:
    2024
  • 资助金额:
    $ 34.51万
  • 项目类别:
    Continuing Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
  • 批准号:
    2344476
  • 财政年份:
    2024
  • 资助金额:
    $ 34.51万
  • 项目类别:
    Standard Grant
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
  • 批准号:
    2340171
  • 财政年份:
    2024
  • 资助金额:
    $ 34.51万
  • 项目类别:
    Continuing Grant
NSF Postdoctoral Fellowship in Biology: Investigating a Novel Circadian Time-Keeping Mechanism Revealed by Environmental Manipulation
美国国家科学基金会生物学博士后奖学金:研究环境操纵揭示的新型昼夜节律机制
  • 批准号:
    2305609
  • 财政年份:
    2024
  • 资助金额:
    $ 34.51万
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了