SPX: Collaborative Research: Memory Fabric: Data Management for Large-scale Hybrid Memory Systems
SPX:协作研究:内存结构:大规模混合内存系统的数据管理
基本信息
- 批准号:2132049
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-15 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
New large-scale high performance computing systems being developed for the national labs and by US industry, combine heterogeneous memory components, accelerators and accelerator-near memory, and programmable high-performance interconnects. These memory-rich designs are attractive as they provide the compute-near-data capacity needed for improving the time to scientific discovery, and for supporting new classes of latency-sensitive data-intensive applications. However, existing software stacks are not equipped to deal with the heterogeneity and complexity of these machine designs, which impacts application performance and machine efficiency. The Memory Fabric (MF) solution developed in this project provides new abstractions and mechanisms that permit the systems software stacks to gain deeper insight into applications' data usage patterns and requirements, and to coordinate the decisions concerning how data should be distributed across different memories, or exchanged along different interconnection paths. The Memory Fabric (MF) architecture introduces new data-centric abstractions, memory object and memory object flow, and accompanying memory and communications management methods. The higher-level information captured in the new abstractions empowers the MF runtime to better guide the underlying memory and interconnect management, and to mask the complexities of the underlying memory substrate. Additional benefits are derived from use of near-memory-fabric computation, including via dynamically inserted application-specific codes, which further specialize and accelerate the operations carried out by MF. MF is evaluated using several important application domains, including big data learning and analytics, and traditional high-performance scientific simulations. Its benefits include gains in application performance and resource efficiency, while shielding applications and application developers from the underlying machine details.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新的大规模高性能计算系统正在为国家实验室和美国工业界开发,结合了异构存储器组件、加速器和加速器附近存储器以及可编程的高性能互连。这些内存丰富的设计很有吸引力,因为它们提供了缩短科学发现时间所需的近数据计算能力,并支持对延迟敏感的新型数据密集型应用程序。然而,现有的软件栈无法处理这些机器设计的异构性和复杂性,这影响了应用程序的性能和机器的效率。本项目开发的内存结构(Memory Fabric, MF)解决方案提供了新的抽象和机制,允许系统软件栈更深入地了解应用程序的数据使用模式和需求,并协调有关数据应该如何在不同的内存中分布或沿着不同的互连路径交换的决策。内存结构(Memory Fabric, MF)架构引入了新的以数据为中心的抽象、内存对象和内存对象流,以及相应的内存和通信管理方法。在新抽象中捕获的高级信息使MF运行时能够更好地指导底层内存和互连管理,并掩盖底层内存基板的复杂性。额外的好处来自于使用近内存结构计算,包括通过动态插入特定于应用程序的代码,这进一步专门化和加速了MF执行的操作。MF使用几个重要的应用领域进行评估,包括大数据学习和分析,以及传统的高性能科学模拟。它的好处包括提高应用程序性能和资源效率,同时保护应用程序和应用程序开发人员不受底层机器细节的影响。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bayesian group testing with dilution effects.
- DOI:10.1093/biostatistics/kxac004
- 发表时间:2023-10-18
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
NVMe-oAF: Towards Adaptive NVMe-oF for IO-Intensive Workloads on HPC Cloud
- DOI:10.1145/3502181.3531476
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Arjun Kashyap;Xiaoyi Lu
- 通讯作者:Arjun Kashyap;Xiaoyi Lu
Arcadia: A Fast and Reliable Persistent Memory Replicated Log
- DOI:10.48550/arxiv.2206.12495
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Shashank Gugnani;S. Guthridge;Frank B. Schmuck;O. Anderson;Deepavali Bhagwat;Xiaoyi Lu
- 通讯作者:Shashank Gugnani;S. Guthridge;Frank B. Schmuck;O. Anderson;Deepavali Bhagwat;Xiaoyi Lu
Understanding hot interconnects with an extensive benchmark survey
- DOI:10.1016/j.tbench.2022.100074
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Yuke Li;Hao Qi;Gang Lu;Feng Jin;Yanfei Guo;Xiaoyi Lu
- 通讯作者:Yuke Li;Hao Qi;Gang Lu;Feng Jin;Yanfei Guo;Xiaoyi Lu
xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning
- DOI:10.1007/s11390-023-2894-6
- 发表时间:2023-02
- 期刊:
- 影响因子:0.7
- 作者:Adam Weingram;Yuke Li;Hao Qi;Darren Ng;L. Dai;Xiaoyi Lu
- 通讯作者:Adam Weingram;Yuke Li;Hao Qi;Darren Ng;L. Dai;Xiaoyi Lu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoyi Lu其他文献
Mechanical robust and self-healing flexible perovskite solar cells with efficiency exceeding 23%
机械%20鲁棒%20和%20自愈%20灵活%20钙钛矿%20太阳能%20电池%20与%20效率%20超越%2023%
- DOI:
10.1007/s11426-024-1954-8 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yaohua Wang;Ruikun Cao;Yuanyuan Meng;Bin Han;Ruijia Tian;Xiaoyi Lu;Zhenhua Song;Shuncheng Yang;Congda Lu;Chang Liu;Ziyi Ge - 通讯作者:
Ziyi Ge
Slurm-V: Extending Slurm for Building Efficient HPC Cloud with SR-IOV and IVShmem
Slurm-V:使用 SR-IOV 和 IVShmem 扩展 Slurm 以构建高效的 HPC 云
- DOI:
10.1007/978-3-319-43659-3_26 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jie Zhang;Xiaoyi Lu;Sourav Chakraborty;D. Panda - 通讯作者:
D. Panda
INAM2: InfiniBand Network Analysis and Monitoring with MPI
INAM2:使用 MPI 进行 InfiniBand 网络分析和监控
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
H. Subramoni;A. Augustine;Mark Daniel Arnold;Jonathan L. Perkins;Xiaoyi Lu;Khaled Hamidouche;D. Panda - 通讯作者:
D. Panda
Designing Virtualization-Aware and Automatic Topology Detection Schemes for Accelerating Hadoop on SR-IOV-Enabled Clouds
设计虚拟化感知和自动拓扑检测方案,以在支持 SR-IOV 的云上加速 Hadoop
- DOI:
10.1109/cloudcom.2016.0037 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Shashank Gugnani;Xiaoyi Lu;D. Panda - 通讯作者:
D. Panda
ON THE ISOTROPIC DISTRIBUTION OF BEAM DIRECTIONS
关于光束方向的各向同性分布
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
L. Papiez;Xiaoyi Lu;M. Langer - 通讯作者:
M. Langer
Xiaoyi Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaoyi Lu', 18)}}的其他基金
CAREER: Heterogeneity-Enriched Communication for Advancing HPC Systems and Applications
职业:丰富异构性的通信以推进 HPC 系统和应用程序
- 批准号:
2340982 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CyberTraining: Pilot: Cross-Layer Training of High-Performance Deep Learning Technologies and Applications for Research Workforce Development in Central Valley
网络培训:试点:高性能深度学习技术和应用程序的跨层培训,用于中央谷研究人员的发展
- 批准号:
2321123 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
- 批准号:
2333324 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Memory Fabric: Data Management for Large-scale Hybrid Memory Systems
SPX:协作研究:内存结构:大规模混合内存系统的数据管理
- 批准号:
1822987 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似海外基金
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2408925 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
- 批准号:
2401544 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
2412182 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
- 批准号:
2318628 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
2333009 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
- 批准号:
2202859 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2113307 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
1919117 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
1918987 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Parallel Algorithm by Blocks - A Data-centric Compiler/runtime System for Productive Programming of Scalable Parallel Systems
SPX:协作研究:块并行算法 - 用于可扩展并行系统的高效编程的以数据为中心的编译器/运行时系统
- 批准号:
1919021 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant