Collaborative Research: Predicting Real-time Population Behavior during Hurricanes Synthesizing Data from Transportation Systems and Social Media
合作研究:综合交通系统和社交媒体数据预测飓风期间的实时人口行为
基本信息
- 批准号:2133960
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project develops new methods to forecast real-time population behavior during natural disasters, potentially transforming the current state of emergency response in a cost-effective way. To understand how individuals, infrastructure systems, and emergency services should prepare and respond during such disasters, this project utilizes data available from multiple sources including from transportation systems and online social media. Using innovative data science approaches to integrate data from multiple sources increases the quality of the data available for emergency response prediction and improved evacuation traffic management. Research outputs will be shared with the practitioner community to facilitate improved decision making for emergency agencies in hurricane evacuation and disaster management. This scientific research contribution thus supports NSF's mission to promote the progress of science and to advance our national welfare. In this case, the benefits will be insights to improve emergency response, which will save lives, economic losses, and reduce panic, anger and confusion during a future event.The project combines heterogeneous data sources from transportation systems and social media, in a unified framework-providing better information for modeling dynamic population behavior during hurricanes. To accurately predict evacuation demand, this project leverages large-scale real-time data, rarely used by existing emergency decision support tools. It advances the data science of disaster management by developing novel information fusion techniques to represent population and its behavior while employing government survey and social media data, text-mining approaches to extract evacuation intent from social media data, and evacuation traffic prediction models to optimize transportation resources. Through its innovative data gathering and modeling approaches, this project will enhance our ability to deal with future hurricanes. The project engages a broader participation of graduate and undergraduate students including from under-represented groups and plans a broader dissemination of results to traffic engineers and emergency management officials from local counties and cities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目开发了新的方法来预测自然灾害期间的实时人口行为,潜在地以具有成本效益的方式改变了当前的应急响应状态。为了了解个人、基础设施系统和应急服务应如何在此类灾难中做好准备和应对,该项目利用了来自多种来源的数据,包括交通系统和在线社交媒体。使用创新的数据科学方法整合来自多个来源的数据,可提高可用于应急响应预测和改进疏散交通管理的数据质量。研究成果将与实践者社区分享,以促进紧急机构在飓风疏散和灾害管理方面改进决策。因此,这项科学研究贡献支持了NSF促进科学进步和增进我们国家福利的使命。在这种情况下,好处将是改进应急响应的见解,这将拯救生命、经济损失,并减少未来事件中的恐慌、愤怒和困惑。该项目将来自交通系统和社交媒体的不同数据源结合在一个统一的框架中-为建模飓风期间的动态人口行为提供更好的信息。为了准确预测疏散需求,该项目利用了现有应急决策支持工具很少使用的大规模实时数据。它通过开发新的信息融合技术来表示人口及其行为,同时利用政府调查和社交媒体数据、文本挖掘方法来从社交媒体数据中提取疏散意图,并通过疏散交通预测模型来优化交通资源,从而推动了灾害管理的数据科学。通过其创新的数据收集和建模方法,该项目将增强我们应对未来飓风的能力。该项目吸引了更广泛的研究生和本科生参与,包括来自代表性不足的群体,并计划将结果更广泛地传播给交通工程师和来自当地县市的应急管理官员。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Forecasting COVID-19 Vaccination Rates using Social Media Data
使用社交媒体数据预测 COVID-19 疫苗接种率
- DOI:10.1145/3543873.3587639
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Li, Xintian;Culotta, Aron
- 通讯作者:Culotta, Aron
Identifying Hurricane Evacuation Intent on Twitter
- DOI:10.1609/icwsm.v16i1.19320
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Xintian Li;Samiul Hasan;A. Culotta
- 通讯作者:Xintian Li;Samiul Hasan;A. Culotta
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aron Culotta其他文献
AI Can Be a Powerful Social Innovation for Public Health if Community Engagement Is at the Core
如果以社区参与为核心,人工智能可以成为公共卫生领域强大的社会创新。
- DOI:
10.2196/68198 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:6.000
- 作者:
Alessandra N Bazzano;Andrea Mantsios;Nicholas Mattei;Michael R Kosorok;Aron Culotta - 通讯作者:
Aron Culotta
Aron Culotta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aron Culotta', 18)}}的其他基金
IUCRC Planning Grant: Tulane: Center for Applied Artificial Intelligence (CAAI)
IUCRC 规划拨款:杜兰大学:应用人工智能中心 (CAAI)
- 批准号:
2137285 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Predicting Real-time Population Behavior during Hurricanes Synthesizing Data from Transportation Systems and Social Media
合作研究:综合交通系统和社交媒体数据预测飓风期间的实时人口行为
- 批准号:
1917112 - 财政年份:2019
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
III: Small: Quantifying Multifaceted Perception Dynamics in Online Social Networks
III:小:量化在线社交网络中的多方面感知动态
- 批准号:
1618244 - 财政年份:2016
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Reducing Classifier Bias in Social Media Studies of Public Health
III:小:合作研究:减少公共卫生社交媒体研究中的分类器偏差
- 批准号:
1526674 - 财政年份:2015
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Prospects and limitations of predicting a potential collapse of the Atlantic meridional overturning circulation
合作研究:预测大西洋经向翻转环流潜在崩溃的前景和局限性
- 批准号:
2343204 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
- 批准号:
2420358 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: New Approaches to Predicting Long-time Behavior of Polymer Glasses
合作研究:预测聚合物玻璃长期行为的新方法
- 批准号:
2330759 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Prospects and limitations of predicting a potential collapse of the Atlantic meridional overturning circulation
合作研究:预测大西洋经向翻转环流潜在崩溃的前景和局限性
- 批准号:
2343203 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: New Approaches to Predicting Long-time Behavior of Polymer Glasses
合作研究:预测聚合物玻璃长期行为的新方法
- 批准号:
2330760 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: EAGER--Evaluation of Optimal Mesonetwork Design for Monitoring and Predicting North American Monsoon (NAM) Convection Using Observing System Simulation
合作研究:EAGER——利用观测系统模拟监测和预测北美季风(NAM)对流的最佳中观网络设计评估
- 批准号:
2308410 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: RESEARCH-PGR: Predicting Phenotype from Molecular Profiles with Deep Learning: Topological Data Analysis to Address a Grand Challenge in the Plant Sciences
合作研究:RESEARCH-PGR:利用深度学习从分子概况预测表型:拓扑数据分析应对植物科学的重大挑战
- 批准号:
2310356 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
- 批准号:
2325392 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: MODEL ENABLED MACHINE LEARNING (MnML) FOR PREDICTING ECOSYSTEM REGIME SHIFTS
合作研究:用于预测生态系统制度转变的模型机器学习 (MnML)
- 批准号:
2233983 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: EDGE CMT: Predicting the evolution of disease resistance across heterogeneous landscapes
合作研究:EDGE CMT:预测异质景观中抗病性的演变
- 批准号:
2220818 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant