Collaborative Research: Foundations of Deep Learning: Theory, Robustness, and the Brain
协作研究:深度学习的基础:理论、稳健性和大脑 —
基本信息
- 批准号:2134059
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A truly comprehensive theory of machine learning has the potential of informing science and engineering in the same profound way Maxwell’s equations did. It was the development of that theory by Maxwell that truly unleashed the potential of electricity, leading to radio, radars, computers, and the Internet. In an analogy, deep learning (DL) has found over the past decade many applications, so far without a comprehensive theory. An eventual theory of learning that explains why and how deep networks work and what their limitations are may thus enable the development of even more powerful learning approaches – especially if the goal of reconnecting DL to brain research bears fruit. In the long term, the ability to develop and build better intelligent machines will be essential to any technology-based economy. After all, even in its current – still highly imperfect –state, DL is impacting or about to impact just about every aspect of our society and life. The investigators also plan to complement their theoretical research with the educational goal of training a diverse population of young researchers from mathematics, computer science, statistics, electrical engineering, and computational neuroscience in the field of machine learning and of its theoretical underpinnings.The investigators propose to join forces in a multi-pronged and collaborative assault on the profound mysteries of DL, informed by the sum of their experience, expertise, ideas, and insight. The research goals are threefold: to develop a sound foundational/mathematical understanding of DL; in doing so to advance the foundational understanding of learning more generally; and to advance the practice of DL by addressing its above-mentioned weaknesses. Of six foundational thrusts, the first two focus on the standard decomposition of the prediction error in approximation and sample (or estimation) error. Their goal is to extend classical results in approximation theory and theory of learnability to DL. These two are then supported by a research project that is specific to deep learning: analysis of the dynamics of gradient descent in training a network. The fourth theme is about robustness against adversaries and shifts, a powerful test for theories which is also important for practical deployment of learning systems. The fifth thrust is about developing the theory of control through DL, as well as exploring dynamical systems aspects of deep reinforcement learning. The final topic connects research on DL to its origins - and possibly its future: networks of neurons in the brain. The proposed research also promises to advance the foundations of learning theory. Success in this project will result in sharper mathematical techniques for machine learning and comprehensive foundations of machine learning robustness, broadly construed. It will also ultimately enable development of learning algorithms that transcend deep learning and guide the way towards creating more intelligent machines, and shed new light on our own intelligence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
一个真正全面的机器学习理论有可能以麦克斯韦方程组同样深刻的方式为科学和工程提供信息。正是麦克斯韦对这一理论的发展真正释放了电力的潜力,导致了无线电、雷达、计算机和互联网的出现。打个比方,深度学习(DL)在过去十年中发现了许多应用,但到目前为止还没有一个全面的理论。因此,一个解释深度网络为什么和如何工作以及它们的局限性的最终学习理论可能会使更强大的学习方法的发展成为可能-特别是如果将深度学习与大脑研究重新联系起来的目标取得成果的话。从长远来看,开发和制造更好的智能机器的能力对任何以技术为基础的经济都至关重要。毕竟,即使是在它目前仍然非常不完善的状态下,深度学习正在或即将影响我们社会和生活的方方面面。研究人员还计划在理论研究的基础上,培养一批来自数学、计算机科学、统计学、电气工程和计算神经科学等领域的年轻研究人员,以实现机器学习及其理论基础的教育目标。研究人员建议联合起来,多管齐下,协同攻击深度学习的奥秘,通过他们的经验,专业知识,想法和洞察力的总和来了解。研究目标有三个方面:发展一个健全的基础/数学的DL理解;这样做,以推进学习的基本理解更普遍;并通过解决其上述弱点,以推进DL的实践。在六个基本要点中,前两个重点是近似和样本(或估计)误差中预测误差的标准分解。他们的目标是将近似理论和可学习性理论中的经典结果推广到DL。然后,这两项研究得到了一个专门针对深度学习的研究项目的支持:分析训练网络中梯度下降的动态。第四个主题是关于对对手和变化的鲁棒性,这是对理论的有力检验,对学习系统的实际部署也很重要。第五个重点是通过深度学习发展控制理论,以及探索深度强化学习的动力系统方面。最后一个主题将DL的研究与其起源-以及可能的未来联系起来:大脑中的神经元网络。拟议中的研究也有望推进学习理论的基础。该项目的成功将为机器学习带来更清晰的数学技术,并为机器学习的鲁棒性提供全面的基础。该奖项反映了NSF的法定使命,通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A biologically plausible parser
生物学上合理的解析器
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:10.9
- 作者:Daniel Mitropolsky, Michael Collins
- 通讯作者:Daniel Mitropolsky, Michael Collins
Self-Attention Networks Can Process Bounded Hierarchical Languages
- DOI:10.18653/v1/2021.acl-long.292
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Shunyu Yao;Binghui Peng;C. Papadimitriou;Karthik Narasimhan
- 通讯作者:Shunyu Yao;Binghui Peng;C. Papadimitriou;Karthik Narasimhan
Conformal Sensitivity Analysis for Individual Treatment Effects
- DOI:10.1080/01621459.2022.2102503
- 发表时间:2021-12
- 期刊:
- 影响因子:3.7
- 作者:Mingzhang Yin;Claudia Shi;Yixin Wang;D. Blei
- 通讯作者:Mingzhang Yin;Claudia Shi;Yixin Wang;D. Blei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christos Papadimitriou其他文献
Nickel(II) and cobalt(II) complexes of 2,4-diaminothieno[2,3-d]-pyrimidines
- DOI:
10.1007/bf00139107 - 发表时间:
1994-06-01 - 期刊:
- 影响因子:1.700
- 作者:
Panayotis Tsiveriotis;George Varvounis;Christos Papadimitriou;Nick Hadjiliadis - 通讯作者:
Nick Hadjiliadis
The complexity of non-stationary reinforcement learning
非平稳强化学习的复杂性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Christos Papadimitriou;Binghui Peng - 通讯作者:
Binghui Peng
Implementing Permutations in the Brain and SVO Frequencies of Languages
在大脑和 SVO 语言频率中实现排列
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Denis Turcu;Christos Papadimitriou - 通讯作者:
Christos Papadimitriou
ENGOT-en11/GOG-3053/KEYNOTE-B21: A phase 3 study of pembrolizumab or placebo in combination with adjuvant chemotherapy with or without radiotherapy in patients with newly diagnosed high-risk endometrial cancer (570)
- DOI:
10.1016/s0090-8258(22)01791-7 - 发表时间:
2022-08-01 - 期刊:
- 影响因子:
- 作者:
Brian Slomovitz;Mansoor Mirza;Alain Lortholary;Ignace Vergote;David Cibula;Axel Walther;Antonella Savarese;Maria Pilar Barretina Ginesta;Firat Ortac;Christos Papadimitriou;Lubomir Bodnar;Chyong-Huey Lai;Kosei Hasegawa;Xiaojun Chen;Emma Barber;Robert Coleman;Stephen Keefe;Robert Orlowski;Toon Van Gorp - 通讯作者:
Toon Van Gorp
Treatment of patients with metastatic urothelial carcinoma and impaired renal function with single-agent docetaxel.
用单药多西他赛治疗患有转移性尿路上皮癌和肾功能受损的患者。
- DOI:
10.1016/s0090-4295(98)00150-2 - 发表时间:
1998 - 期刊:
- 影响因子:2.1
- 作者:
Meletios A. Dimopoulos;Charalambos Deliveliotis;L. Moulopoulos;Christos Papadimitriou;D. Mitropoulos;A. Anagnostopoulos;Peter Athanassiades;Constantinos Dimopoulos - 通讯作者:
Constantinos Dimopoulos
Christos Papadimitriou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christos Papadimitriou', 18)}}的其他基金
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
AF: Medium: Research in Algorithms and Complexity for Total Functions
AF:中:全函数的算法和复杂性研究
- 批准号:
2212233 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: A Computational Theory of Brain Function
AF:小:协作研究:脑功能的计算理论
- 批准号:
1910700 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
AF: Medium: Research in Algorithms and Complexity: Total Functions, Games, and the Brain
AF:媒介:算法和复杂性研究:总体功能、游戏和大脑
- 批准号:
1763970 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
AF: Medium: Algorithmic Explorations of Networks, Markets, Evolution, and the Brain
AF:媒介:网络、市场、进化和大脑的算法探索
- 批准号:
1819935 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
AF: Medium: Algorithmic Explorations of Networks, Markets, Evolution, and the Brain
AF:媒介:网络、市场、进化和大脑的算法探索
- 批准号:
1408635 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
"Succinct Data Representations and Applications
“简洁的数据表示和应用
- 批准号:
1340226 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
AF: Medium: Algorithmic Research in Game Theory, Networks, and Biology
AF:媒介:博弈论、网络和生物学的算法研究
- 批准号:
0964033 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Research on Games, Networks, and Algorithms
博弈、网络和算法研究
- 批准号:
0635319 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Research on Algorithms, Complexity, and Database Theory
算法、复杂性和数据库理论研究
- 批准号:
9820897 - 财政年份:1999
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
基于知识协同深度注释的盐炙车前子激活GLUL缓解慢性肾病的物质基础及其作用机制研究
- 批准号:QN25H280025
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
涉农高职院校服务乡村产业振兴角色定位及协同育人机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
成渝地区双城经济圈质量基础设施协同服务的机制与路径研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
城市道路与地下供水基础设施系统耦合机理与协同韧性提升研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
数据-知识-模型协同驱动的高标准农田基础设施遥感监测方法研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
离子-π/空间关联协同构建木质素基仿生粘附材料及其应用基础研究
- 批准号:22378143
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
熔盐浸出富硅生物质协同电沉积制备硅碳材料基础研究
- 批准号:52304331
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于微量铌和稀土协同处理制备高性能超级双相不锈钢的基础研究
- 批准号:52374334
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
冲击荷载作用下节理岩体灾变机理及协同控制基础研究
- 批准号:52374128
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于脑脊液谱效学与网络药理学相结合研究逍遥丸多靶协同抗抑郁的药效物质基础和作用机制
- 批准号:2023JJ60489
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402852 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: A Multi-Lab Investigation of the Conceptual Foundations of Early Number Development
合作研究:早期数字发展概念基础的多实验室调查
- 批准号:
2405548 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CIF:Medium:Theoretical Foundations of Compositional Learning in Transformer Models
合作研究:CIF:Medium:Transformer 模型中组合学习的理论基础
- 批准号:
2403074 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CIF:Medium:Theoretical Foundations of Compositional Learning in Transformer Models
合作研究:CIF:Medium:Transformer 模型中组合学习的理论基础
- 批准号:
2403075 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
- 批准号:
2313131 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Foundations of Anonymous Communication in Large-Scale Networks
合作研究:AF:媒介:大规模网络中匿名通信的基础
- 批准号:
2312241 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
- 批准号:
2329938 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant