FMSG: Bio: Biophysical Modulation for Scalable Biomanufacturing of Stem Cell-Derived Therapeutics

FMSG:生物:干细胞衍生疗法可扩展生物制造的生物物理调节

基本信息

  • 批准号:
    2134494
  • 负责人:
  • 金额:
    $ 46.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) are promising therapeutic agents for a range of clinical disorders owing to their immunomodulatory and pro-regenerative functions. A major bottleneck in EV biomanufacturing is scalability during development of a product to achieve clinically relevant doses. Current practices rely on invasive manipulations of cells and culture conditions, which can have deleterious implications on the final product and can incur high cost and operate at small scales, making them less viable for best-practice manufacturing. This project will improve EV production through noninvasive mechanical stimulation of MSCs by delivering low magnitude mechanical signals to MSCs cultured in two-dimensional and three-dimensional systems. This project will identify cellular responses to biophysical modulations and evaluate improvements to overall secretome, EV production, and functionality. The project will not only add new fundamental knowledge on mechanotransduction in MSCs behind EV release, but also provide functional evidence for overcoming large-scale manufacturing challenges in EV production. Students from underrepresented populations will engage in research; this will help train and develop a strong and diverse future biomanufacturing workforce, together having wide-reaching impacts on education, science and engineering, and the U.S economy. This Future Manufacturing award is supported by the following Division/Programs and Offices: ENG/CBET, MPS/CHE, MPS/DMR, EHR/DUE, and OIA/EPSCoR.Strategies to improve EV production include hypoxic culture conditions, serum starvation, and immortalization of MSCs – all of which have deleterious implications in cell integrity and functionality and operate at small scales, thus necessitating development of feasible methods to enhance manufacturing. This project is based on the scientific premise that MSCs are mechanosensitive cells responding to mechanical stimuli. The central hypothesis is that delivery of mechanical cues/forces in the form of low-magnitude mechanical stimulation (LMMS) to MSCs can affect (i) cell membrane integrin-cytoskeletal interactions that regulate actin dynamics and vesicle transport, and (ii) alter intracellular calcium levels leading to consequential release of EVs. The project harnesses the mechanotransduction of external forces on actin via integrins/talin, and subsequent influence on EV machinery towards the overall improvement in EV secretion by MSCs. Based on preliminary evidence that mechanical signals increase overall MSC secretome and EV concentration, this Future Manufacturing project will investigate the mechanisms behind mechanically triggered EV release, and will determine qualitative and functional improvements in EVs secreted in response to mechanical stimulation. The project will establish a minimally manipulative biophysical method to scale-up manufacturing of EVs from MSCs through delivery of low magnitude mechanical vibrations. The three major objectives are (1) To evaluate the effects of LMMS-based biophysical cell modulation system on EV release and unravel underlying mechanotransduction changes in MSCs in response to LMMS; (2) To assess functional potency of LMMS-induced EVs for immunosuppression (in vitro) and tissue regeneration (in vivo) in a critical-sized calvarial defect model; and (3) Leverage research outcomes to support education and development of a skilled technical workforce in the state of Arkansas by engaging undergraduate, graduate, and middle school students in biomanufacturing education and research. The project will benefit the field of life sciences, manufacturing and bioengineering education and research, contributing to sustained U.S. competitiveness in EV biomanufacturing for research and therapy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
间充质干细胞(MSCs)来源的细胞外小泡(EV)具有免疫调节和促进再生的功能,是治疗一系列临床疾病的有效药物。电动汽车生物制造的一个主要瓶颈是在产品开发期间的可扩展性,以实现临床相关的剂量。目前的做法依赖于对细胞和培养条件的侵入性操作,这可能会对最终产品产生有害影响,并可能导致高成本和小规模操作,使它们不太适合最佳实践制造。该项目将通过向在二维和三维系统中培养的骨髓间充质干细胞传递低幅度的机械信号,通过对骨髓间充质干细胞的非侵入性机械刺激来提高电动汽车的产量。该项目将确定细胞对生物物理调节的反应,并评估对整体分泌体、EV生产和功能的改善。该项目不仅将增加关于电动汽车释放背后的MSCs机械转导的新的基础知识,而且还将为克服电动汽车生产中的大规模制造挑战提供功能证据。来自代表性不足人群的学生将从事研究;这将有助于培养和发展一支强大和多样化的未来生物制造劳动力,共同对教育、科学和工程以及美国经济产生广泛影响。这一未来制造奖由以下部门/计划和办公室支持:ENG/CBET、MPS/CHE、MPS/DMR、EHR/DUE和OIA/EPSCoR。改善电动汽车生产的策略包括低氧培养条件、血清饥饿和骨髓间充质干细胞永生化-所有这些都对细胞完整性和功能具有有害影响,并以小规模运行,因此需要开发可行的方法来增强制造。该项目是基于MSCs是对机械刺激做出反应的机械敏感细胞这一科学前提。核心假设是,以低幅度机械刺激(LMM)的形式向MSCs传递机械信号/力可以影响(I)调节肌动蛋白动力学和囊泡运输的细胞膜整合素-细胞骨架相互作用,以及(Ii)改变细胞内钙水平从而导致EV的释放。该项目利用外力通过整合素/talin对肌动蛋白的机械传递,以及随后对EV机制的影响,从而全面改善MSCs的EV分泌。基于机械信号增加整体MSC分泌组和EV浓度的初步证据,这个未来制造项目将研究机械触发EV释放背后的机制,并将确定EV在响应机械刺激时分泌的质量和功能改善。该项目将建立一种最低限度操控的生物物理方法,通过提供低幅度的机械振动来扩大从MSCs制造电动汽车的规模。三个主要目标是(1)评估基于LMMS的生物物理细胞调制系统对EV释放的影响,并揭示响应LMMS的MSCs潜在的机械转导变化;(2)在临界大小的颅骨缺损模型中评估LMMS诱导的EVS在免疫抑制(体外)和组织再生(体内)中的功能效力;以及(3)通过吸引本科生、研究生和中学生参与生物制造教育和研究,利用研究成果支持阿肯色州的教育和熟练技术劳动力的发展。该项目将惠及生命科学、制造业和生物工程教育和研究领域,有助于美国在电动汽车生物制造研究和治疗方面的持续竞争力。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Versatility of mesenchymal stem cell-derived extracellular vesicles in tissue repair and regenerative applications
  • DOI:
    10.1016/j.biochi.2022.11.011
  • 发表时间:
    2022-12-02
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Williams, Taylor;Salmanian, Ghazaleh;Samsonraj, Rebekah Margaret
  • 通讯作者:
    Samsonraj, Rebekah Margaret
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rebekah Samsonraj其他文献

Rebekah Samsonraj的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

骨胶原(Bio-Oss Collagen)联合龈下喷砂+骨皮质切开术治疗 根分叉病变的临床疗效研究
  • 批准号:
    2024JJ9542
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
智能双栅调控InSe Bio-FET可控构筑与原位细胞传感机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于通用型 M13-Bio 噬菌体信号放大的动态 光散射免疫传感检测平台的建立及机制研究
  • 批准号:
    Q24C200014
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
2D/2D BiO2-x/graphyne异质结光热活化过硫酸盐降解水体中抗生素的机理研究
  • 批准号:
    LY23E080003
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
BIO促进脂肪来源干细胞修复急性心肌梗死的作用及机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
Z型异质结“(金属氧化物MOx@薄层碳TC)/BiO1-xCl”的可控构筑及其光催化性能的研究
  • 批准号:
    22005126
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
6-BIO 抗肝脏衰老的作用与作用机制研究
  • 批准号:
    19ZR1438800
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于MOFs热解构建薄层碳包覆的BiO1-xX基Z型异质结及其光催化水氧化苯制苯酚反应的研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
可回收MFe2O4/二维 (BiO)2CO3 复合纳米矿物材料光降解再生水中顽固型有机物机理
  • 批准号:
    41877481
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bio-MATSUPER: Development of high-performance supercapacitors based on bio-based carbon materials
Bio-MATSUPER:开发基于生物基碳材料的高性能超级电容器
  • 批准号:
    EP/Z001013/1
  • 财政年份:
    2025
  • 资助金额:
    $ 46.63万
  • 项目类别:
    Fellowship
Biophilica - Analysis of bio-coatings as an alternative to PU-coatings for advanced product applications
Biophilica - 分析生物涂层作为先进产品应用的 PU 涂层的替代品
  • 批准号:
    10089592
  • 财政年份:
    2024
  • 资助金额:
    $ 46.63万
  • 项目类别:
    Collaborative R&D
Designing a bio-sensitive visualisation for saltmarsh conservation
设计用于盐沼保护的生物敏感可视化
  • 批准号:
    AH/Z50533X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.63万
  • 项目类别:
    Research Grant
HAIRCYCLE: a pilot study to explore and test regenerative, local, bio-based and circular models for human hair waste
HAIRCYCLE:一项试点研究,旨在探索和测试人类毛发废物的再生、局部、生物基和循环模型
  • 批准号:
    AH/Z50550X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.63万
  • 项目类别:
    Research Grant
Fair Game: valuing the bio-cultural heritage of fallow deer and their venison for food security, sustainable woodlands and biodiversity
公平游戏:重视小鹿及其鹿肉的生物文化遗产,以促进粮食安全、可持续林地和生物多样性
  • 批准号:
    AH/Z505675/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.63万
  • 项目类别:
    Research Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 46.63万
  • 项目类别:
    Standard Grant
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
  • 批准号:
    2335999
  • 财政年份:
    2024
  • 资助金额:
    $ 46.63万
  • 项目类别:
    Standard Grant
CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
  • 批准号:
    2338792
  • 财政年份:
    2024
  • 资助金额:
    $ 46.63万
  • 项目类别:
    Continuing Grant
FMRG: Bio: Enabling Technologies for Biomanufacturing Extracellular Vesicle-Based Therapeutics
FMRG:生物:基于细胞外囊泡的生物制造治疗的使能技术
  • 批准号:
    2328276
  • 财政年份:
    2024
  • 资助金额:
    $ 46.63万
  • 项目类别:
    Standard Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
  • 批准号:
    2344109
  • 财政年份:
    2024
  • 资助金额:
    $ 46.63万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了