Collaborative Research: Image-based Readouts of Cellular State using Universal Morphology Embeddings

协作研究:使用通用形态学嵌入基于图像的细胞状态读出

基本信息

  • 批准号:
    2134696
  • 负责人:
  • 金额:
    $ 48.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Observing cells under the microscope reveals an incredible amount of information about cellular processes. For example, images of cells can reveal cell types, and whether the cells are healthy or sick, among others. This research aims to develop advanced computational models to measure cellular traits in microscopy images. Cellular measurements taken from images are useful to conduct biological research such as understanding how diseases work, diagnosing patients, and searching for effective cures. All of these applications are fundamental to advance and promote national health. An important aspect of this project is that the computational models for measuring cellular traits will be of general purpose and reusable across many biological applications where microscopy images are acquired, with minimal or no manual configuration. This research will design, develop and make publicly available the models and automated tools to facilitate rapid image-based cellular analysis in basic biological research and other biotechnology systems. This project will involve diverse researchers working in an inclusive environment at the intersection of cutting-edge machine learning technologies and image analysis for cell biology. Diverse graduate students and postdocs will be trained in an inclusive environment at the intersection of cutting-edge deep learning technologies and image analysis for cell biology.Extracting cell morphological features from images is a complex, ad-hoc process without well established standards. Typically, imaging projects develop custom approaches from scratch and measure only a few cellular features given the complexity and diversity of imaging techniques and experimental goals. This lack of a common methodology to define and measure the morphological state of single cells prevents researchers from realizing the full potential of imaging for advancing cell biology. This project aims to create a universal deep-learning model for collecting single-cell morphological data. It will readily quantify cell morphology in any microscopy image, requiring little to no training. The specific goals of this research are: 1) develop methods for learning and extracting multidimensional representations of cell morphology from diverse imaging experiments, 2) formulate strategies for correcting batch effects and removing technical variation, and 3) develop strategies for analyzing and interpreting the biological significance of morphological features. For learning representations, neural networks that can adaptively process multi-channel microscopy images will be developed and trained using self-supervised learning. Domain adaptation techniques will be extended for correcting batch effects. Importantly, learned features will be used to map relations between populations of cells and explainable methods will be designed to facilitate their interpretation. This research will prepare imaging datasets from various public sources for training and evaluation, including the Broad Bioimage Benchmark Collections (BBBC), the Image Data Resource (IDR), and the Human Protein Atlas (HPA). The models created in this project will be applicable to most microscopy imaging protocols to transform images of single cells into quantitative data for biological research. All the results, software tools and models will be publicly available at http://broad.io/morphemThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在显微镜下观察细胞揭示了关于细胞过程的大量信息。例如,细胞的图像可以揭示细胞类型,以及细胞是健康还是生病等。本研究旨在开发先进的计算模型来测量显微图像中的细胞特征。从图像中获取的细胞测量对于进行生物学研究是有用的,例如了解疾病如何工作,诊断患者和寻找有效的治疗方法。所有这些应用都是推进和促进国民健康的基础。该项目的一个重要方面是,用于测量细胞性状的计算模型将具有通用性,并可在许多获取显微镜图像的生物应用中重复使用,只需最少或无需手动配置。这项研究将设计、开发和公开提供模型和自动化工具,以促进基础生物研究和其他生物技术系统中基于图像的快速细胞分析。该项目将涉及不同的研究人员在一个包容性的环境中工作,在尖端机器学习技术和细胞生物学图像分析的交叉点。不同的研究生和博士后将在一个包容性的环境中接受培训,在尖端的深度学习技术和细胞生物学图像分析的交叉点上。从图像中提取细胞形态特征是一个复杂的临时过程,没有完善的标准。通常情况下,成像项目从头开始开发定制方法,并考虑到成像技术和实验目标的复杂性和多样性,仅测量少数细胞特征。由于缺乏一种通用的方法来定义和测量单细胞的形态状态,研究人员无法充分发挥成像技术在推进细胞生物学方面的潜力。该项目旨在创建一个用于收集单细胞形态数据的通用深度学习模型。它将很容易量化任何显微镜图像中的细胞形态,几乎不需要训练。本研究的具体目标是:1)开发从不同成像实验中学习和提取细胞形态多维表征的方法,2)制定校正批次效应和消除技术差异的策略,3)开发分析和解释形态特征生物学意义的策略。对于学习表示,可以自适应处理多通道显微图像的神经网络将使用自监督学习进行开发和训练。域自适应技术将被扩展用于校正批量效应。重要的是,学习的功能将用于绘制细胞群体之间的关系,并设计可解释的方法来促进它们的解释。这项研究将准备来自各种公共来源的成像数据集进行培训和评估,包括广泛的生物图像基准集(BBBC),图像数据资源(IDR)和人类蛋白质图谱(HPA)。该项目中创建的模型将适用于大多数显微镜成像协议,将单细胞图像转化为生物研究的定量数据。所有的结果,软件工具和模型将在www.example.com上公开http://broad.io/morphemThis奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Supervised Attribute Information Removal and Reconstruction for Image Manipulation
  • DOI:
    10.48550/arxiv.2207.06555
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nannan Li;Bryan A. Plummer
  • 通讯作者:
    Nannan Li;Bryan A. Plummer
Bias Mimicking: A Simple Sampling Approach for Bias Mitigation
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bryan Plummer其他文献

Bryan Plummer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Geophysical Campaign to Image CZ Structure Along Hillslope Gradients in the Neotropics
合作研究:新热带地区沿山坡梯度的 CZ 结构成像地球物理运动
  • 批准号:
    2233555
  • 财政年份:
    2023
  • 资助金额:
    $ 48.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Geophysical Campaign to Image CZ Structure Along Hillslope Gradients in the Neotropics
合作研究:新热带地区沿山坡梯度的 CZ 结构成像地球物理运动
  • 批准号:
    2233556
  • 财政年份:
    2023
  • 资助金额:
    $ 48.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Visual Information about surface curvature from patterns of image shading and contours
合作研究:从图像阴影和轮廓图案中获取有关表面曲率的视觉信息
  • 批准号:
    2238180
  • 财政年份:
    2023
  • 资助金额:
    $ 48.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Visual Information about surface curvature from patterns of image shading and contours
合作研究:从图像阴影和轮廓图案中获取有关表面曲率的视觉信息
  • 批准号:
    2238179
  • 财政年份:
    2023
  • 资助金额:
    $ 48.7万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Bridging the Semantic-Metric Gap via Multinocular Image Integration
合作研究:RI:Medium:通过多目图像集成弥合语义度量差距
  • 批准号:
    2312746
  • 财政年份:
    2023
  • 资助金额:
    $ 48.7万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Bridging the Semantic-Metric Gap via Multinocular Image Integration
合作研究:RI:Medium:通过多目图像集成弥合语义度量差距
  • 批准号:
    2312747
  • 财政年份:
    2023
  • 资助金额:
    $ 48.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Image-based Readouts of Cellular State using Universal Morphology Embeddings
协作研究:使用通用形态学嵌入基于图像的细胞状态读出
  • 批准号:
    2348683
  • 财政年份:
    2023
  • 资助金额:
    $ 48.7万
  • 项目类别:
    Standard Grant
RUI: Collaborative Research: CDS&E: A Modular Multilayer Framework for Real-Time Hyperspectral Image Segmentation
RUI:合作研究:CDS
  • 批准号:
    2411519
  • 财政年份:
    2023
  • 资助金额:
    $ 48.7万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Bridging the Semantic-Metric Gap via Multinocular Image Integration
合作研究:RI:Medium:通过多目图像集成弥合语义度量差距
  • 批准号:
    2312745
  • 财政年份:
    2023
  • 资助金额:
    $ 48.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Image-based Readouts of Cellular State using Universal Morphology Embeddings
协作研究:使用通用形态学嵌入基于图像的细胞状态读数
  • 批准号:
    2134695
  • 财政年份:
    2022
  • 资助金额:
    $ 48.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了