Collaborative Research: U.S.-Ireland R&D Partnership: Full Atomistic Understanding of Solid-Liquid Interfaces via an Integrated Experiment-Theory Approach

合作研究:美国-爱尔兰 R

基本信息

  • 批准号:
    2137147
  • 负责人:
  • 金额:
    $ 31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

The worldwide deployment of renewable energy requires efficient electrochemical systems, such as batteries, supercapacitors, and fuel cells. In most of these systems, the energy conversion and storage processes rely crucially on the interface between solid electrodes and liquid electrolytes. However, the fundamental atomic and molecular structure at these electrified interfaces remains elusive. The goal of the project is to achieve an atomistic understanding of the structure and reaction dynamics of electrode-electrolyte interfaces, and provide design principles for various low-cost, carbon-based electrochemical systems. Through international collaborations with the University College Dublin and Ulster University, the PIs will develop an integrated experimental imaging - atomistic simulation method. The technical outcomes of the project will facilitate the design and engineering of efficient electrochemical energy conversion and storage systems. The educational efforts of the project will build and incorporate demo devices of electrochemical cells and materials imaging platforms into a series of education and outreach activities both domestically and internationally. The project will train the graduate and undergraduate students with skills in both experimental and simulation methods and provide them with an international collaborative research experience. The project will contribute to efforts to educate the public on the basic mechanisms of renewable energy conversion and storage.The project’s aim is to achieve a thorough atomistic understanding of electrochemical processes by determining the 3D structure of electrode-electrolyte interfaces, including both the surface of the solid electrodes and the liquid solvation layers. The project’s approach will integrate molecular dynamics and density functional theory simulations with 3D atomic-resolution force microscopy experiments to achieve a joint experiment-theory platform for precise understanding and prediction of electrochemical interfaces. The platform will be used to unravel the solvation layer structure that is responsible for energy storage in carbon-based supercapacitors, and the solvent-included atomistic kinetics of electrocatalytic reactions on single-atom catalysts. The project will produce fundamental models of solid-liquid interfaces that consider the inherent atomic-scale heterogeneities. Furthermore, the thorough determination of the atomistic interfacial structure and catalytic activities of single-atom catalysts will shed light on the unconventional scaling relationships of catalysts with nonuniform structures. This will be an important step towards a more predictive, molecular-level theory beyond the widely accepted "Sabatier Principle" for heterogeneous catalysis and electrocatalysis. The results will significantly foster the design and engineering of electrochemical interfaces for low-cost, highly efficient renewable energy applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可再生能源的全球部署需要高效的电化学系统,如电池、超级电容器和燃料电池。在大多数这些系统中,能量转换和存储过程关键地依赖于固体电极和液体电解质之间的界面。然而,这些带电界面的基本原子和分子结构仍然难以捉摸。该项目的目标是从原子角度了解电极-电解质界面的结构和反应动力学,并为各种低成本、碳基电化学系统提供设计原则。通过与都柏林大学学院和阿尔斯特大学的国际合作,PI将开发一种综合实验成像-原子模拟方法。该项目的技术成果将促进高效电化学能量转换和存储系统的设计和工程。该项目的教育工作将建立并将电化学电池和材料成像平台的演示设备纳入国内和国际的一系列教育和推广活动中。该项目将培训研究生和本科生的实验和模拟方法技能,并为他们提供国际合作研究经验。该项目将有助于教育公众了解可再生能源转换和储存的基本机制,其目的是通过确定电极-电解质界面的3D结构,包括固体电极表面和液体溶剂化层,实现对电化学过程的彻底原子理解。该项目的方法将分子动力学和密度泛函理论模拟与3D原子分辨率力显微镜实验相结合,以实现精确理解和预测电化学界面的联合实验-理论平台。该平台将用于解开负责碳基超级电容器中能量存储的溶剂化层结构,以及单原子催化剂上电催化反应的溶剂化原子动力学。该项目将产生考虑固有的原子尺度不均匀性的固液界面的基本模型。此外,原子界面结构和单原子催化剂的催化活性的彻底测定将揭示非均匀结构的催化剂的非常规标度关系。这将是一个重要的一步,更具有预测性,分子水平的理论超越了广泛接受的“萨巴捷原则”的多相催化和电催化。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingjie Zhang其他文献

The Enhanced Electro-catalytic Performance of Au@Pd Nanoparticles Self-assembled on Fluorine-Modified Multi-walled Carbon Nanotubes for Methanol Oxidation
氟改性多壁碳纳米管自组装Au@Pd纳米粒子增强甲醇氧化电催化性能
  • DOI:
    10.1007/s10562-018-2511-4
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Zhenhua Jin;Jinmei Ji;Qiugu He;Xikun Yang;Yingjie Zhang;Mingli Xu
  • 通讯作者:
    Mingli Xu
Numerical Investigation of the Fan Flutter Mechanism Related to Acoustic Propagation Characteristics
与声传播特性相关的风扇颤振机理的数值研究
  • DOI:
    10.1115/1.4054161
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xu Dong;Yanfeng Zhang;Xingen Lu;Yingjie Zhang;Jiuliang Gan
  • 通讯作者:
    Jiuliang Gan
Field investigation into the vibration characteristics at the embankment of ballastless tracks induced by high-speed trains in frozen regions
冰冻地区高速列车无碴轨道路基振动特性现场调查
  • DOI:
    10.1016/j.soildyn.2020.106387
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Shuang Tian;Liang Tang;Xianzhang Ling;Yangsheng Ye;Shanzhen Li;Yingjie Zhang;Wei Wang
  • 通讯作者:
    Wei Wang
Degradation of Orange IV Dye Solution Catalyzed by PVDF/Fe3+-TiO2 Catalytic Membrane in the Presence of H2O2
H2O2 存在下 PVDF/Fe3-TiO2 催化膜催化橙 IV 染料溶液的降解
  • DOI:
    10.4028/www.scientific.net/amr.150-151.1705
  • 发表时间:
    2010-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingjie Zhang;Li Zhang;Xiaofei Ma;Li Li;Jun Ma
  • 通讯作者:
    Jun Ma
CO2 electrolysis to formic acid for carbon neutralization
CO2电解生成甲酸进行碳中和
  • DOI:
    10.1016/j.gee.2024.04.011
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kezhen Qi;Shu;Yingjie Zhang;Hui Zhang;Vadim Popkov;Oksana Almjasheva
  • 通讯作者:
    Oksana Almjasheva

Yingjie Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingjie Zhang', 18)}}的其他基金

CAREER: Elucidating the Correlative Interfacial Solvation, Nucleation, and Growth Processes in Battery Electrolytes
职业:阐明电池电解质中相关的界面溶剂化、成核和生长过程
  • 批准号:
    2339175
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: U.S. institutions after COVID-19: Trust, accountability, and public perceptions
合作研究:COVID-19 后的美国机构:信任、责任和公众看法
  • 批准号:
    2422394
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: U.S. Crossroads—Connectivity of the North Atlantic Deep Western Boundary Current through the Subpolar-Subtropical Transition Zone
合作研究:美国十字路口——北大西洋深西边界流通过副极地-副热带过渡区的连通性
  • 批准号:
    2318948
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Collaborative Research: U.S. Crossroads—Connectivity of the North Atlantic Deep Western Boundary Current through the Subpolar-Subtropical Transition Zone
合作研究:美国十字路口——北大西洋深西边界流通过副极地-副热带过渡区的连通性
  • 批准号:
    2318947
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Collaborative Research: Unraveling North American Ice-Sheet Dynamics and Regional Sea-Level Change along the U.S. Mid-Atlantic over the Last Glacial Cycle
合作研究:揭示末次冰期期间北美冰盖动力学和美国大西洋中部沿线区域海平面变化
  • 批准号:
    2244721
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: U.S.-Ireland R&D Partnership: CIF: AF: Small: Enabling Beyond-5G Wireless Access Networks with Robust and Scalable Cell-Free Massive MIMO
合作研究:美国-爱尔兰 R
  • 批准号:
    2322191
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Feeling the Squeeze: How Financial Stress Shapes Decision Making and Risk for Drinking Water Systems in U.S. Cities
合作研究:感受到压力:财务压力如何影响美国城市饮用水系统的决策和风险
  • 批准号:
    2401551
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
COLLABORATIVE RESEARCH: Feeling the Squeeze: How Financial Stress Shapes Decision Making and Risk for Drinking Water Systems in U.S. Cities
合作研究:感受到压力:财务压力如何影响美国城市饮用水系统的决策和风险
  • 批准号:
    2402003
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Collaborative Research: Unraveling North American Ice-Sheet Dynamics and Regional Sea-Level Change along the U.S. Mid-Atlantic over the Last Glacial Cycle
合作研究:揭示末次冰期期间北美冰盖动力学和美国大西洋中部沿线区域海平面变化
  • 批准号:
    2244722
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: U.S.-Ireland R&D Partnership: CIF: AF: Small: Enabling Beyond-5G Wireless Access Networks with Robust and Scalable Cell-Free Massive MIMO
合作研究:美国-爱尔兰 R
  • 批准号:
    2322190
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: U.S. GEOTRACE GP17-OCE and GP17-ANT: Characterizing iron-binding organic ligands in the Southern Ocean and implications for iron cycling in the global ocean
合作研究:美国 GEOTRACE GP17-OCE 和 GP17-ANT:南大洋铁结合有机配体的特征及其对全球海洋铁循环的影响
  • 批准号:
    2219626
  • 财政年份:
    2022
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了