LEAPS-MPS: Elliptic theory for the Schrodinger operator
LEAPS-MPS:薛定谔算子的椭圆理论
基本信息
- 批准号:2137743
- 负责人:
- 金额:$ 11.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Laplace equation is the prototypical second-order elliptic partial differential equation (PDE). Consequently, solutions to the Laplace equation, known as harmonic functions, are a fundamental component of PDE theory. But these functions are also important to many other areas of science and engineering, like complex analysis, harmonic analysis, geometry, physics, and engineering. As such, harmonic functions have been extensively studied and are well understood. While the Laplace equation models steady-state phenomena in a uniform environment, the world that we live in is not an isotropic vacuum. The mathematical equations that govern many natural phenomena like electromagnetism, astronomy, and fluid dynamics are often more complicated than Laplace’s equation. For example, the Schrodinger equation describes the behavior of quantum-mechanical waves, while its generalizations describe even more complex settings. Therefore, there is a need to understand the properties of solutions to such general elliptic PDEs. This project combines mathematical pursuits in harmonic analysis with the goal of promoting the inclusion and retention of a diverse mathematical community. The latter objective will be achieved through an orientation program for incoming graduate students along with extra-curricular mentorship programs.In this project, the PI will explore how and to what extent the presence of lower-order terms and variable coefficients affects the behavior of solutions to elliptic equations. With the Schrodinger equation serving as the standard example, these effects will be examined through the three distinct perspectives of unique continuation, homogenization, and solvability. Harmonic functions have the following unique continuation properties: locally, they cannot vanish to infinite order; and if defined globally, Liouville’s Theorem asserts that they cannot be bounded everywhere. Motivated by Landis’ conjecture, one facet of this program seeks to precisely quantify these kinds of local and global behaviors for solutions to generalized Schrodinger equations. By going further and considering elliptic equations with periodic coefficients, this program also explores the interplay between homogenization theory and unique continuation. Carleman estimates and complex analysis techniques will be combined with compactness arguments to accomplish this feat. Work on the solvability of the Dirichlet and Neumann boundary value problems for the Laplace equation led to a huge development in the theory of PDEs and harmonic analysis. The PI’s previous work will be used to explore the questions of solvability for general systems of elliptic PDEs with lower order terms, and further knowledge will be gained while bringing together ideas from distinct areas of mathematics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
拉普拉斯方程是典型的二阶椭圆型偏微分方程。因此,拉普拉斯方程的解,称为调和函数,是偏微分方程组理论的基本组成部分。但这些函数对科学和工程的许多其他领域也很重要,如复分析、调和分析、几何、物理和工程。因此,调和函数已被广泛研究并被很好地理解。虽然拉普拉斯方程模拟了均匀环境中的稳态现象,但我们生活的世界并不是各向同性的真空。支配许多自然现象的数学方程,如电磁学、天文学和流体动力学,往往比拉普拉斯方程复杂。例如,薛定谔方程描述了量子力学波的行为,而它的推广描述了更复杂的环境。因此,有必要了解此类一般椭圆型偏微分方程解的性质。该项目将调和分析中的数学追求与促进包容和保留不同数学社区的目标结合在一起。后一个目标将通过为即将入学的研究生开设的定向课程和课外辅导课程来实现。在这个项目中,PI将探索低阶项和可变系数的存在如何以及在多大程度上影响椭圆型方程的解的行为。本文以薛定谔方程为例,从唯一性延拓、齐次化和可解性三个不同的角度来考察这些效应。调和函数具有如下独特的延拓性质:局部,它们不能消失到无限级;如果定义为全局,刘维尔定理断言,它们不可能处处有界。在兰迪斯猜想的启发下,本程序的一个方面寻求精确地量化广义薛定谔方程解的这种局部和整体行为。通过进一步考虑具有周期系数的椭圆型方程,本程序还探索了齐次化理论和唯一延拓之间的相互作用。Carleman估计和复杂的分析技术将与紧凑性论证相结合来完成这一壮举。拉普拉斯方程Dirichlet边值问题和Neumann边值问题的可解性研究使偏微分方程组和调和分析理论得到了极大的发展。PI以前的工作将被用来探索具有低阶项的一般椭圆型偏微分方程组的可解性问题,并将在汇集不同数学领域的想法的同时获得进一步的知识。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improved quantitative unique continuation for complex-valued drift equations in the plane
改进了平面中复值漂移方程的定量唯一延拓
- DOI:10.1515/forum-2022-0114
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:Davey, Blair;Kenig, Carlos;Wang, Jenn-Nan
- 通讯作者:Wang, Jenn-Nan
A Quantification of a Besicovitch Non-linear Projection Theorem via Multiscale Analysis
通过多尺度分析量化贝西科维奇非线性投影定理
- DOI:10.1007/s12220-021-00793-z
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Davey, Blair;Taylor, Krystal
- 通讯作者:Taylor, Krystal
Upper and lower bounds on the rate of decay of the Favard curve length for the four-corner Cantor set
四角康托集 Favard 曲线长度衰减率的上限和下限
- DOI:10.1512/iumj.2022.71.8951
- 发表时间:2022
- 期刊:
- 影响因子:1.1
- 作者:Cladek, Laura;Davey, Blair;Taylor, Krystal
- 通讯作者:Taylor, Krystal
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Blair Davey其他文献
Exponential decay estimates for fundamental matrices of generalized Schrödinger systems
- DOI:
10.1007/s00208-023-02791-8 - 发表时间:
2024-01-12 - 期刊:
- 影响因子:1.400
- 作者:
Joshua Isralowitz;Blair Davey - 通讯作者:
Blair Davey
Quantitative unique continuation for Schrödinger operators
薛定谔算子的定量唯一延拓
- DOI:
10.1016/j.jfa.2020.108566 - 发表时间:
2019 - 期刊:
- 影响因子:1.7
- 作者:
Blair Davey - 通讯作者:
Blair Davey
Fundamental matrices and Green matrices for non-homogeneous elliptic systems
非齐次椭圆系统的基本矩阵和格林矩阵
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Blair Davey;Jonathan Hill;S. Mayboroda - 通讯作者:
S. Mayboroda
Strong unique continuation for the Lamé system with less regular coefficients
具有较少正则系数的 Lamé 系统的强大独特延续
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:1.4
- 作者:
Blair Davey;C. Lin;Jenn - 通讯作者:
Jenn
Quantitative uniqueness of solutions to second order elliptic equations with singular potentials in two dimensions
二维奇异势二阶椭圆方程解的定量唯一性
- DOI:
10.1007/s00526-018-1345-7 - 发表时间:
2017 - 期刊:
- 影响因子:2.1
- 作者:
Blair Davey;Jiuyi Zhu - 通讯作者:
Jiuyi Zhu
Blair Davey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Blair Davey', 18)}}的其他基金
CAREER: Elliptic and Parabolic Partial Differential Equations
职业:椭圆和抛物型偏微分方程
- 批准号:
2236491 - 财政年份:2023
- 资助金额:
$ 11.96万 - 项目类别:
Continuing Grant
相似国自然基金
时序释放Met/Qct-MPs葡萄糖响应型水凝胶对糖尿病创面微环境调节机制的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
脓毒症血浆中微粒(MPs)对免疫细胞的作用机制 及其免疫抑制的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
中性粒细胞释放CitH3+MPs活化NLRP3炎性小体激活胆汁淤积性肝病肝内凝血活性
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 MPS 方法的燃料熔盐高温氧化与凝固迁徙行为机理研究
- 批准号:24ZR1478500
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于代谢组学的滋水清肝饮干预乳腺癌内分泌治疗相关MPS的多中心临床研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
六价铬和PET-MPs联合暴露诱导大鼠神经毒性铁死亡的机制研究
- 批准号:2024Y9704
- 批准年份:2024
- 资助金额:10.0 万元
- 项目类别:省市级项目
Mps1磷酸化RPA2增强ATR介导的DNA损伤修复促进高级别浆液性卵巢癌PARP抑制剂耐药的机制研究
- 批准号:82303896
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合MPS与GAN的复杂地质结构三维重建方法研究
- 批准号:42372341
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
PS-MPs环境暴露干扰甲状腺—棕色脂肪对话引发糖脂代谢紊乱的作用及机制研究
- 批准号:82370847
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
HIF-1α介导SOX17抑制纺锤体装配检查点相关基因Mps1调控滋养细胞功能的机制研究
- 批准号:82101760
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
- 批准号:
2402099 - 财政年份:2024
- 资助金额:
$ 11.96万 - 项目类别:
Fellowship Award
生理機能を再現するオルガノイド融合型MPSデバイスの開発
开发再现生理功能的类器官融合 MPS 装置
- 批准号:
23K26472 - 财政年份:2024
- 资助金额:
$ 11.96万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ヒト脳関門の統合評価システムBrain-MPSの構築
人脑屏障综合评价系统Brain-MPS的构建
- 批准号:
24K18340 - 财政年份:2024
- 资助金额:
$ 11.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
LEAPS-MPS: Fast and Efficient Novel Algorithms for MHD Flow Ensembles
LEAPS-MPS:适用于 MHD 流系综的快速高效的新颖算法
- 批准号:
2425308 - 财政年份:2024
- 资助金额:
$ 11.96万 - 项目类别:
Standard Grant
LEAPS-MPS: Network Statistics of Rupturing Foams
LEAPS-MPS:破裂泡沫的网络统计
- 批准号:
2316289 - 财政年份:2024
- 资助金额:
$ 11.96万 - 项目类别:
Standard Grant
LEAPS-MPS: Light Tunable Redox-Active Hybrid Nanomaterial with Ultrahigh Catalytic Activity for Colorimetric Applications
LEAPS-MPS:具有超高催化活性的光可调氧化还原活性混合纳米材料,适用于比色应用
- 批准号:
2316793 - 财政年份:2024
- 资助金额:
$ 11.96万 - 项目类别:
Standard Grant
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
- 批准号:
2313262 - 财政年份:2023
- 资助金额:
$ 11.96万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: MPS-Ascend: Quantifying Accelerated Reaction Kinetics in Microdroplets with pH-Jump and Mass Spectrometry: From Small Molecules to Proteins and Beyond
博士后奖学金:MPS-Ascend:利用 pH 跳跃和质谱定量微滴中的加速反应动力学:从小分子到蛋白质及其他
- 批准号:
2316167 - 财政年份:2023
- 资助金额:
$ 11.96万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: MPS-Ascend: Understanding Fukaya categories through Homological Mirror Symmetry
博士后奖学金:MPS-Ascend:通过同调镜像对称理解深谷范畴
- 批准号:
2316538 - 财政年份:2023
- 资助金额:
$ 11.96万 - 项目类别:
Fellowship Award
LEAPS-MPS: Cooperative Transformations of N-Heterocycles with Heterometallic Complexes
LEAPS-MPS:N-杂环与异金属配合物的协同转化
- 批准号:
2316582 - 财政年份:2023
- 资助金额:
$ 11.96万 - 项目类别:
Standard Grant