Quantum Mechanics of Interacting Electron Fluid in Berry-curved Materials

莓曲材料中相互作用电子流体的量子力学

基本信息

  • 批准号:
    2138008
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

Non-technical summaryThis award supports theoretical studies of experimentally measurable manifestations of quantum mechanics in the collective behavior of electrons in solids. Quantum mechanics has proven crucial to explaining the behavior of this electron fluid. However, more often than not, macroscopic properties (e.g., electrical conduction) of the electron fluid can be described quite classically. For instance, the equations describing viscous flow of the electronic liquid are very similar to those that describe water, showing essentially classical behavior. The present project goes beyond this traditional point of view in developing a quantum theory for electron flow.The Principal investigator will focus on the interaction of magnetic order with higher-energy states in three-dimensional analogs of graphene, called Weyl and Dirac semimetals. He will study electron motion in the presence of a magnetic field on the edge of a two-dimensional "topological insulator" and deviations from the classical equations for viscous fluid flow. These topics will bring out the quantum effects in solids as a characterization tool for their microscopic properties.The research will involve graduate and undergraduate students and will facilitate their training in modern methods of condensed-matter theory. The educational efforts will also be directed toward implementation of modern classroom techniques (e.g. the "flipped" classroom) into the teaching practices of the PI. The outreach program will be directed toward training high-school students and acquainting them with the demands and traditions of higher education.Technical summaryThe objective of this proposal is to provide theoretical insights into the interaction of electronic degrees of freedom with macroscopic order parameters as well as transport and hydrodynamic properties of the interacting electronic fluid in (disordered) gapless topological phases, with a strong focus on experimentally observable phenomena. The research program contains three main thrusts. The common thread connecting these thrusts is the quantum mechanics of electrons on the lattice, manifested through geometric phases. The thrusts are1. Anomaly-induced electric control of magnetic degrees of freedom in Weyl materials: the PI will develop the theory of interaction between the electronic degrees of freedom of a topological metal with a macroscopic magnetization. Specifically, he will focus on i) the anomaly-induced magnetic anisotropy for anomaly detection and magnetization control, ii) the theory of current-induced spin torques in 3D topological metals, and iii) the manifestations of band topology in textured magnetic phases and magnetic excitations.2. Nonlinear transport and magnetotransport phenomena in Weyl and other geometric metals: the PI will study nonlinear phenomena rooted in band geometry (not having classical "Drude" analogs) in 3D and 1D gapless systems. The specific directions will include i) developing a general theory of E2B-corrections to transport in metals, ii) non-linear anomalous Hall effect in disordered Weyl semimetals, and iii) the theory of kinetic magnetoelectric effect and nonlinear transport on 1D topological and Rashba edges.3. Anomalous hydrodynamics in crystals: the PI will develop the theory of quantum effects in electron-electron collisions and their influence on electronic hydrodynamics. The specific directions PI Pesin will pursue within this thrust focus on i) anomalous transport in the hydrodynamic regime, in particular in multi-valley Berry-curved (semi-)conductors, ii) the anomalous Hall viscosity from electron-electron collisions in gapless systems, and iii) chiral vortical effect in crystals.The methods of the project will include standard tools of many-body theory, including the Keldysh diagrammatic technique and the quantum kinetic equation approach to quantum transport, as well as some numerical modeling. The results of the program will be used to provide guidance for materials research, paying particular attention to the realistic aspects of systems with nontrivial topology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该奖项支持对固体中电子集体行为中量子力学的实验可测量表现的理论研究。 事实证明,量子力学对于解释这种电子流体的行为至关重要。 然而,通常情况下,电子流体的宏观特性(例如导电)可以非常经典地描述。例如,描述电子液体粘性流动的方程与描述水的方程非常相似,基本上表现出经典行为。本项目在发展电子流量子理论方面超越了这一传统观点。首席研究员将重点研究石墨烯三维类似物(称为韦尔和狄拉克半金属)中磁序与高能态的相互作用。 他将研究二维“拓扑绝缘体”边缘存在磁场时的电子运动以及粘性流体流动经典方程的偏差。 这些主题将揭示固体中的量子效应,作为表征其微观性质的工具。该研究将涉及研究生和本科生,并将促进他们接受现代凝聚态理论方法的培训。教育工作还将致力于将现代课堂技术(例如“翻转”课堂)应用到 PI 的教学实践中。外展计划将旨在培训高中生,让他们熟悉高等教育的要求和传统。技术摘要本提案的目的是为电子自由度与宏观有序参数的相互作用以及相互作用的电子流体在(无序)无间隙拓扑相中的输运和流体动力学特性提供理论见解,重点关注实验可观察的 现象。 该研究计划包含三个主要目标。连接这些推力的共同点是晶格上电子的量子力学,通过几何相位表现出来。 推力是1。 Weyl 材料中磁自由度的异常感应电控制:PI 将开发拓扑金属的电子自由度与宏观磁化强度之间相互作用的理论。具体来说,他将重点关注i)用于异常检测和磁化控制的异常引起的磁各向异性,ii)3D拓扑金属中电流引起的自旋扭矩理论,以及iii)带拓扑在纹理磁相和磁激励中的表现。 2. Weyl 和其他几何金属中的非线性输运和磁输运现象:PI 将研究 3D 和 1D 无间隙系统中根源于能带几何形状(没有经典的“Drude”类似物)的非线性现象。具体方向将包括i)发展金属中输运的E2B校正的一般理论,ii)无序Weyl半金属中的非线性反常霍尔效应,以及iii)一维拓扑和Rashba边缘上的动磁电效应和非线性输运理论。 3.晶体中的反常流体动力学:PI 将发展电子-电子碰撞中的量子效应理论及其对电子流体动力学的影响。 PI Pesin 在这一推力中将追求的具体方向集中在 i) 流体动力学体系中的反常输运,特别是在多谷贝里弯曲(半)导体中,ii) 无间隙系统中电子-电子碰撞产生的反常霍尔粘度,以及 iii) 晶体中的手性涡旋效应。该项目的方法将包括多体理论的标准工具,包括 Keldysh 量子传输的图解技术和量子动力学方程方法,以及一些数值建模。该计划的结果将用于为材料研究提供指导,特别关注具有重要拓扑的系统的现实方面。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magnetotransport on quantum spin Hall edge coupled to bulk midgap states
  • DOI:
    10.1103/physrevb.108.085436
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Y. Chen;Wenjing Zhao;E. Runburg;D. Cobden;D. Pesin
  • 通讯作者:
    Y. Chen;Wenjing Zhao;E. Runburg;D. Cobden;D. Pesin
Geometric phase for nonlinear oscillators from perturbative renormalization group
微扰重正化群非线性振子的几何相位
  • DOI:
    10.1103/physreve.108.044215
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Khromov, D. A.;Kryvoruchko, M. S.;Pesin, D. A.
  • 通讯作者:
    Pesin, D. A.
Nonreciprocal optics and magnetotransport in Weyl metals as signatures of band topology
韦尔金属中的不可逆光学和磁输运作为能带拓扑的特征
  • DOI:
    10.1103/physrevb.106.l041108
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Nandy, S.;Pesin, D. A.
  • 通讯作者:
    Pesin, D. A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dmytro Pesin其他文献

Dmytro Pesin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dmytro Pesin', 18)}}的其他基金

Geometric aspects of optical and transport phenomena in gapless topological phases
无间隙拓扑相中光学和传输现象的几何方面
  • 批准号:
    1738384
  • 财政年份:
    2018
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Geometric aspects of optical and transport phenomena in gapless topological phases
无间隙拓扑相中光学和传输现象的几何方面
  • 批准号:
    1853048
  • 财政年份:
    2018
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Mesoscopic and many-body effects in topological phases of matter
物质拓扑相中的介观和多体效应
  • 批准号:
    1409089
  • 财政年份:
    2014
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Science China-Physics, Mechanics & Astronomy
  • 批准号:
    11224804
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Interacting Particle Systems, Statistical Mechanics, and Related Topics
相互作用的粒子系统、统计力学及相关主题
  • 批准号:
    1850957
  • 财政年份:
    2019
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER: Experimental and Theoretical Studies of Mechanics Interacting with Electric/Optical Fields in Liquid Crystal Elastomers
职业:液晶弹性体中与电场/光场相互作用的力学实验和理论研究
  • 批准号:
    1554212
  • 财政年份:
    2016
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Special Trimester on Interacting Particle Systems, Statistical Mechanics and Probability Theory
相互作用粒子系统、统计力学和概率论的特殊学期
  • 批准号:
    0825081
  • 财政年份:
    2008
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Studies in Interacting Particle Systems and Statistical Mechanics
相互作用粒子系统和统计力学研究
  • 批准号:
    0300672
  • 财政年份:
    2003
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Studies in Interacting Particle Systems and Statistical Mechanics
相互作用粒子系统和统计力学研究
  • 批准号:
    0071766
  • 财政年份:
    2000
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Interacting Graphical Models and Related Topics in Statistical Mechanics
统计力学中的交互图形模型和相关主题
  • 批准号:
    9971016
  • 财政年份:
    1999
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Studies in Interacting Particle Systems and Statistical Mechanics
相互作用粒子系统和统计力学研究
  • 批准号:
    9703814
  • 财政年份:
    1997
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Rigorous Results on Statistical Mechanics of Interacting Particle Systems
数学科学:相互作用粒子系统统计力学的严格结果
  • 批准号:
    9305904
  • 财政年份:
    1993
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
STATISTICAL MECHANICS OF INTERACTING SYSTEMS
相互作用系统的统计力学
  • 批准号:
    7139263
  • 财政年份:
    1971
  • 资助金额:
    $ 37.5万
  • 项目类别:
Statistical Mechanics of Interacting Particles With Relativistic Interaction Corrections
具有相对论相互作用修正的相互作用粒子的统计力学
  • 批准号:
    6930293
  • 财政年份:
    1969
  • 资助金额:
    $ 37.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了