Collaborative Research: Novel Integration of Direct Measurements with Numerical Models for Real-time Estimation and Forecasting of Streamflow Response to Cyclical Processes
合作研究:直接测量与数值模型的新颖集成,用于实时估计和预测水流对循环过程的响应
基本信息
- 批准号:2139663
- 负责人:
- 金额:$ 25.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Continuous monitoring of natural rivers supports socio-economic needs related to water resources management and forecasting and provides benchmark data for scientific investigations. The current protocols for continuously monitoring streamflows are based on approaches that fail to accurately capture the short-time effects of flood wave propagation and the seasonal impacts of changes to stream bank vegetation. While decades of substantial advancements in instrumentation technologies have dramatically transformed our in-situ measurement capabilities, this progress has not been mirrored by advancements in streamflow monitoring protocols. The outcomes of the proposed research will fill this gap by offering critical support for water science and management and by adding reliability to predictive models used to issue flood warnings required to protect communities and critical infrastructures. Increasing the accuracy of streamflow measurements in real time and improving the reliability of forecast models will have direct positive impacts on the wellbeing and safety of the public at a time when flooding continues to be a major threat to communities. The research outcomes will include rapid tools derived with artificial intelligence techniques that supplement existing forecasting capabilities. The proposed research combines inferences from experimental, data-driven (i.e., machine learning) and physically-based numerical investigations to enable adoption of a reach-scale monitoring method (rather than cross-sectional) and real time tracking of changes to all flow variables induced by unsteady flows and riparian vegetation growth. A heterogeneous routing approach complemented by extensive data analysis will allow the extraction of interdependencies among flow variables produced by subtle features of the hysteretic behavior associated with the above-mentioned cyclical processes. Generalization of the inferences for a wide range of flow and site conditions will cost-effectively improve the protocols for predictive streamflow relationships using only in-situ acquired data, without making recourse to modeling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对天然河流的持续监测支持与水资源管理和预测有关的社会经济需求,并为科学调查提供基准数据。目前的协议,用于连续监测流量的方法,未能准确地捕捉洪水波传播的短期影响和季节性的影响,流银行植被的变化。虽然几十年来仪器技术的重大进步已经极大地改变了我们的现场测量能力,但流量监测协议的进步并没有反映出这一进步。拟议研究的成果将填补这一空白,为水科学和管理提供关键支持,并为用于发布保护社区和关键基础设施所需的洪水预警的预测模型增加可靠性。提高真实的流量测量的准确性和提高预测模型的可靠性,将对公众的福祉和安全产生直接的积极影响,因为洪水仍然是对社区的主要威胁。研究成果将包括人工智能技术衍生的快速工具,以补充现有的预测能力。 拟议的研究结合了实验,数据驱动(即,机器学习)和基于物理的数值研究,以便能够采用范围监测方法(而不是横截面)和真实的时间跟踪由非稳定流和河岸植被生长引起的所有流量变量的变化。一个异构路由的方法,辅以广泛的数据分析,将允许提取的流动变量之间的相互依存关系所产生的微妙功能的滞后行为与上述周期性过程。广泛的流量和现场条件的推论的推广将具有成本效益地提高预测流量关系的协议,只使用现场采集的数据,而不诉诸modeling.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准的评估支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ehab Meselhe其他文献
Real time forecasting in the coastal zone: Stream power in the lower Mississippi River
沿海地区的实时预报:密西西比河下游的水流功率
- DOI:
10.1016/j.ejrh.2024.102088 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:5.000
- 作者:
Laura Manuel;Ehab Meselhe;Kelin Hu;Arnejan van Loenen;Thies Blokhuijsen;Md Nazmul Azim Beg - 通讯作者:
Md Nazmul Azim Beg
Patterns and mechanisms of wetland change in the Breton sound estuary, Mississippi River delta: A review
- DOI:
10.1016/j.ecss.2024.109065 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:
- 作者:
John Day;Robert Lane;Matt Moerschbaecher;H.C. Clark;Mead Allison;Ehab Meselhe;Alexander S. Kolker;Rachael Hunter;Paul Kemp;Jae-Young Ko;Robert Twilley;John R. White;Ron DeLaune;Jessica R. Stephens;Camille Chenevert;Emily Fucile Sanchez;Disha Sinha - 通讯作者:
Disha Sinha
Assessment of mineral concentration impacts from pumped stormwater on an Everglades Wetland, Florida, USA – Using a spatially-explicit model
- DOI:
10.1016/j.jhydrol.2012.05.016 - 发表时间:
2012-07-25 - 期刊:
- 影响因子:
- 作者:
Chunfang Chen;Ehab Meselhe;Michael Waldon - 通讯作者:
Michael Waldon
Ehab Meselhe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ehab Meselhe', 18)}}的其他基金
U.S.-Egypt Cooperative Research: Flood Prediction and Water Management for Sinai Peninsula Using Remote Sensing and Distributed Hydrologic Modeling Techniques
美国-埃及合作研究:利用遥感和分布式水文建模技术进行西奈半岛洪水预测和水资源管理
- 批准号:
0513829 - 财政年份:2005
- 资助金额:
$ 25.93万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347992 - 财政年份:2024
- 资助金额:
$ 25.93万 - 项目类别:
Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347991 - 财政年份:2024
- 资助金额:
$ 25.93万 - 项目类别:
Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
- 批准号:
2346198 - 财政年份:2024
- 资助金额:
$ 25.93万 - 项目类别:
Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
- 批准号:
2346197 - 财政年份:2024
- 资助金额:
$ 25.93万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312872 - 财政年份:2023
- 资助金额:
$ 25.93万 - 项目类别:
Standard Grant
Collaborative Research: IHBEM: The fear of here: Integrating place-based travel behavior and detection into novel infectious disease models
合作研究:IHBEM:这里的恐惧:将基于地点的旅行行为和检测整合到新型传染病模型中
- 批准号:
2327797 - 财政年份:2023
- 资助金额:
$ 25.93万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
- 批准号:
2324033 - 财政年份:2023
- 资助金额:
$ 25.93万 - 项目类别:
Standard Grant
Collaborative Research: Enhanced Photolysis and Advanced Oxidation Processes by Novel KrCl* (222 nm) Irradiation
合作研究:通过新型 KrCl* (222 nm) 辐照增强光解和高级氧化过程
- 批准号:
2310137 - 财政年份:2023
- 资助金额:
$ 25.93万 - 项目类别:
Standard Grant
Collaborative Research: Magnetic Clustering using Novel Poly(amino acid) Corrals to Advance Magnetic Particle Imaging
合作研究:利用新型聚氨基酸畜栏进行磁聚类以推进磁粒子成像
- 批准号:
2305404 - 财政年份:2023
- 资助金额:
$ 25.93万 - 项目类别:
Standard Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
- 批准号:
2219796 - 财政年份:2023
- 资助金额:
$ 25.93万 - 项目类别:
Standard Grant