Rydberg Exciton in Atomically Thin Semiconductor for On-chip Quantum Optoelectronics

用于片上量子光电器件的原子薄半导体中的里德伯激子

基本信息

  • 批准号:
    2139692
  • 负责人:
  • 金额:
    $ 41.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Rydberg atom refers to a high energy atom with a size much larger than the atom at its lowest energy state. The large size of the Rydberg atoms enables strong interactions among themselves that can be exploited for quantum information science. Light excitation of semiconductors can generate positive and negative charges bound together, known as excitons. The tightly bound exciton at the high energy state, known as Rydberg exciton, is an analogue to the Rydberg atom and shares many superior properties, such as the strong interaction. Rydberg excitons in traditional semiconductors are either not stable enough or difficult to be patterned and controlled. The atomically thin semiconductors known as transitional metal dichalcogenides (TMDCs), however, host robust excitons and usher in an exciting platform of manipulating Rydberg excitons in two-dimension (2D). The Rydberg exciton in TMDCs also has a new quantum degree of freedom. We have recently developed a new measurement technique with high sensitivity to probe the largest 2D Rydberg exciton ever reported. In this proposal, we will pattern the atomically thin semiconductor so that we can control the in-plane electric field and study its interaction with the 2D Rydberg excitons. We will also probe the strong interaction between Rydberg excitons, which will pave the way for a new platform for quantum information science. The integrated education components train the next generation workforce for semiconductors, nanoscale technology, optical science and engineering through research opportunities, curriculum development, and outreach activities, with a particular emphasis on educating and recruiting under-represented groups. Both existing programs at Rensselaer Polytechnic Institute and newly developed outreach programs will be utilized to encourage K-12 students to study in the field of quantum information science and engineering.Technical Description: Rydberg atoms refer to the atoms with the outer electron occupying the highly excited state with a very large principal quantum number n. The strong interaction between Rydberg atoms leads to nonlinear effects such as the Rydberg blockade, providing a promising route for quantum computing and simulation. Rydberg exciton, an excited state of the optically excited electron-hole pair, is a condensed matter analogue of the Rydberg atom and can be directly used for optoelectronic devices thanks to mature fabrication and control technologies of semiconductors. Although high-order Rydberg excitons have been extensively studied in Cu2O crystals, it is difficult to pattern and control the Rydberg exciton in bulk semiconductors. Atomically thin semiconductors host robust exciton with large binding energy, which can also be efficiently controlled electrostatically, thereby opening doors to exciting opportunities for quantum optoelectronics. Here we propose to construct high-quality monolayer transitional metal dichalcogenides (TMDCs) devices in which we fabricate an on-chip p-n junction. We also propose to probe and control the Rydberg excitons through our recently developed photocurrent spectroscopy techniques, with which we have shown unprecedented high order Rydberg excitons in monolayer WSe2 with n = 11. We will investigate the Rydberg exciton’s sensitive response to the external electric and magnetic fields. We will also explore nonlinear effects and try to demonstrate the 2D Rydberg exciton blockade for the first time. This proposal will not only directly demonstrate a prototype of a quantum sensing device based on 2D Rydberg excitons but also paves the way for a ground-breaking platform to manipulate highly tunable 2D Rydberg excitons for quantum information science and engineering. The closely integrated research and education components provide training opportunities for graduate, undergraduate, and K-12 students on advanced optical spectroscopy, nanoscale device fabrication, and quantum materials, with special emphasis on recruiting under-represented groups. This proposal also includes outreach programs for K-12 students, such as working with Troy Boys and Girls Club.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
里德伯原子是指一种高能量原子,其尺寸比最低能量状态的原子大得多。里德伯原子的大尺寸使它们之间的强相互作用成为可能,可以用于量子信息科学。半导体的光激发可以产生结合在一起的正电荷和负电荷,称为激子。处于高能态的紧密束缚激子,称为里德伯激子,是里德伯原子的类似物,并且具有许多上级性质,例如强相互作用。传统半导体中的里德伯激子要么不够稳定,要么难以图案化和控制。然而,被称为过渡金属二硫属化物(TMDC)的原子薄半导体拥有强大的激子,并在二维(2D)中操纵里德伯激子的令人兴奋的平台。TMDCs中的里德伯激子也有一个新的量子自由度。我们最近开发了一种新的测量技术,具有高灵敏度,以探测有史以来报道的最大的二维里德伯激子。在这个提议中,我们将图案化原子级薄的半导体,这样我们就可以控制面内电场,并研究它与2D里德伯激子的相互作用。我们还将探索里德伯激子之间的强相互作用,这将为量子信息科学的新平台铺平道路。综合教育部分通过研究机会,课程开发和推广活动,为半导体,纳米技术,光学科学和工程培养下一代劳动力,特别强调教育和招聘代表性不足的群体。伦斯勒理工学院现有的项目和新开发的推广项目都将被用来鼓励K-12学生在量子信息科学和工程领域学习。技术说明:里德伯原子是指外层电子占据高激发态,主量子数n很大的原子。里德伯原子之间的强相互作用导致了里德伯封锁等非线性效应,为量子计算和模拟提供了一条有前途的途径。里德伯激子是光激发电子-空穴对的激发态,是里德伯原子的凝聚态类似物,由于成熟的半导体制造和控制技术,可以直接用于光电器件。虽然高阶里德伯激子在Cu_2O晶体中已被广泛研究,但在体半导体中很难对其进行图案化和控制。原子薄的半导体拥有强大的激子,具有大的结合能,也可以有效地静电控制,从而为量子光电子学打开了令人兴奋的机会之门。在这里,我们建议构建高品质的单层过渡金属二硫属化物(TMDCs)的设备中,我们制造的芯片上的p-n结。我们还建议通过我们最近开发的光电流光谱技术来探测和控制里德伯激子,我们已经在单层WSe 2中显示了前所未有的高阶里德伯激子,n = 11。我们将研究里德伯激子对外电场和磁场的敏感响应。我们还将探索非线性效应,并试图首次证明2D里德伯激子封锁。该提案不仅将直接展示基于2D Rydberg激子的量子传感设备的原型,而且还为开创性的平台铺平了道路,以操纵高度可调谐的2D Rydberg激子用于量子信息科学和工程。 紧密结合的研究和教育部分为研究生,本科生和K-12学生提供先进的光学光谱学,纳米器件制造和量子材料的培训机会,特别强调招募代表性不足的群体。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sufei Shi其他文献

Dynamic Resolution of Photocurrent Generating Pathways by Field-Dependent Ultrafast Microscopy
场相关超快显微镜的光电流产生路径的动态分辨率
Two-pulse space-time photocurrent correlations at graphene p-n junctions reveal hot carrier cooling dynamics near the Fermi level
石墨烯p-n结处的两脉冲时空光电流相关性揭示了费米能级附近的热载流子冷却动力学
  • DOI:
    10.1051/epjconf/20134104026
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Graham;Sufei Shi;D. Ralph;Jiwoong Park;P. McEuen
  • 通讯作者:
    P. McEuen

Sufei Shi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sufei Shi', 18)}}的其他基金

Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344658
  • 财政年份:
    2024
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Standard Grant
Collaborative Research: Correlated States in Twisted Hetero-bilayer Transition Metal Dichalcogenides
合作研究:扭曲异双层过渡金属二硫属化物中的相关态
  • 批准号:
    2104902
  • 财政年份:
    2021
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Standard Grant
CAREER:Light-Matter Interaction in Van der Waals Heterostructures of Atomically Thin Semiconductors
职业:原子薄半导体范德华异质结构中的光与物质相互作用
  • 批准号:
    1945420
  • 财政年份:
    2020
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Continuing Grant
Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344658
  • 财政年份:
    2024
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Standard Grant
Unraveling exciton dynamics for valleytronics applications with Time-resolved ARPES
利用时间分辨 ARPES 揭示谷电子学应用的激子动力学
  • 批准号:
    24K00561
  • 财政年份:
    2024
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Realizing High Temperature Exciton Condensates at Molecule/2D van der Waals Interfaces
在分子/2D 范德华界面实现高温激子凝聚
  • 批准号:
    2401141
  • 财政年份:
    2024
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Standard Grant
Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344659
  • 财政年份:
    2024
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Standard Grant
New Horizons in the Atomistic Simulation of Charge and Exciton Transport in Optoelectronic Materials
光电材料中电荷和激子输运原子模拟的新视野
  • 批准号:
    2868548
  • 财政年份:
    2023
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Studentship
Collaborative Research: Probing and Controlling Exciton-Plasmon Interaction for Solar Hydrogen Generation
合作研究:探测和控制太阳能制氢的激子-等离子体激元相互作用
  • 批准号:
    2230729
  • 财政年份:
    2023
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Continuing Grant
Ultrafast Dephasing of Strongly Coupled Plasmon-Exciton States
强耦合等离子体激子态的超快相移
  • 批准号:
    2304905
  • 财政年份:
    2023
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Standard Grant
Collaborative Research: Thermal Transport via Four-Phonon and Exciton-Phonon Interactions in Layered Electronic and Optoelectronic Materials
合作研究:层状电子和光电材料中四声子和激子-声子相互作用的热传输
  • 批准号:
    2321302
  • 财政年份:
    2023
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Standard Grant
Collaborative Research: Thermal Transport via Four-Phonon and Exciton-Phonon Interactions in Layered Electronic and Optoelectronic Materials
合作研究:层状电子和光电材料中四声子和激子-声子相互作用的热传输
  • 批准号:
    2321301
  • 财政年份:
    2023
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了