CAREER: L-Functions and Subconvexity
职业:L 函数和次凸性
基本信息
- 批准号:2140604
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project is focused on establishing properties of L-functions, which are functions on the complex plane that encode information about various mathematical structures. An example of an L-function is the Riemann zeta function that encodes information about the prime numbers, which today are essential to the way computer data is securely transferred. Other types of L-functions can, for example, help explain the way waves propagate on certain surfaces, a topic of interest in physics. The educational activities of the project include mentoring a postdoctoral researcher, training graduate students in research, introducing undergraduates to research, and immersing high school students in a summer mathematics program that emphasizes the type of thinking used in research.This project will focus on investigating the subconvexity problem, an important and deep question in the theory of L-functions. The subconvexity problem is connected to equidistribution questions and involves obtaining non-trivial upper bounds for an L-function on its critical line. Such bounds are particularly difficult in “conductor-dropping’’ scenarios. The main goal of this project is to establish new subconvexity bounds for L-functions and push existing bounds towards the gold standard (the so-called Weyl bound). The project will consider the symmetric-square L-functions (or close approximations of these), L-functions at “special points” exhibiting conductor dropping, and strong hybrid bounds for L-functions, such as those of Hecke eigenforms twisted by Dirichlet characters. The methodology will include moments of L-functions in families, reciprocity formulae, and automorphic spectral analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This research project is focused on establishing properties of L-functions, which are functions on the complex plane that encode information about various mathematical structures. An example of an L-function is the Riemann zeta function that encodes information about the prime numbers, which today are essential to the way computer data is securely transferred. Other types of L-functions can, for example, help explain the way waves propagate on certain surfaces, a topic of interest in physics. The educational activities of the project include mentoring a postdoctoral researcher, training graduate students in research, introducing undergraduates to research, and immersing high school students in a summer mathematics program that emphasizes the type of thinking used in research.This project will focus on investigating the subconvexity problem, an important and deep question in the theory of L-functions. The subconvexity problem is connected to equidistribution questions and involves obtaining non-trivial upper bounds for an L-function on its critical line. Such bounds are particularly difficult in “conductor-dropping’’ scenarios. The main goal of this project is to establish new subconvexity bounds for L-functions and push existing bounds towards the gold standard (the so-called Weyl bound). The project will consider the symmetric-square L-functions (or close approximations of these), L-functions at “special points” exhibiting conductor dropping, and strong hybrid bounds for L-functions, such as those of Hecke eigenforms twisted by Dirichlet characters. The methodology will include moments of L-functions in families, reciprocity formulae, and automorphic spectral analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rizwanur Khan其他文献
The first moment of the symmetric-square L-function
- DOI:
10.1016/j.jnt.2006.09.010 - 发表时间:
2007-06 - 期刊:
- 影响因子:0.7
- 作者:
Rizwanur Khan - 通讯作者:
Rizwanur Khan
On subconvexity bounds for twisted L-functions
- DOI:
- 发表时间:
2020-06 - 期刊:
- 影响因子:0
- 作者:
Rizwanur Khan - 通讯作者:
Rizwanur Khan
Simultaneous non-vanishing of GL(3) × GL(2) and GL(2) L-functions
- DOI:
10.1017/s0305004111000806 - 发表时间:
2011-03 - 期刊:
- 影响因子:0.8
- 作者:
Rizwanur Khan - 通讯作者:
Rizwanur Khan
The divisor function in arithmetic progressions modulo prime powers
- DOI:
10.1112/s0025579316000024 - 发表时间:
2015-10 - 期刊:
- 影响因子:0
- 作者:
Rizwanur Khan - 通讯作者:
Rizwanur Khan
A conjecture for the regularized fourth moment of Eisenstein series
- DOI:
10.1016/j.jnt.2017.06.012 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:
- 作者:
Goran Djanković;Rizwanur Khan - 通讯作者:
Rizwanur Khan
Rizwanur Khan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rizwanur Khan', 18)}}的其他基金
CAREER: L-Functions and Subconvexity
职业:L 函数和次凸性
- 批准号:
2341239 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Analytic Theory of Automorphic Forms and L-Functions
自守形式和 L 函数的解析理论
- 批准号:
2344044 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Analytic Theory of Automorphic Forms and L-Functions
自守形式和 L 函数的解析理论
- 批准号:
2001183 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
Cosmological hydrodynamical simulations with calibrated non-universal initial mass functions
使用校准的非通用初始质量函数进行宇宙流体动力学模拟
- 批准号:
2903298 - 财政年份:2027
- 资助金额:
$ 40万 - 项目类别:
Studentship
New substrates and functions for the DYRK protein kinases
DYRK 蛋白激酶的新底物和功能
- 批准号:
2894877 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Studentship
Adaptive Artificial Receptors for Biomimetic Functions
仿生功能的自适应人工受体
- 批准号:
MR/X023303/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Fellowship
Immunoregulatory functions of appetite controlling brain circuits
食欲控制脑回路的免疫调节功能
- 批准号:
BB/Y005694/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
New substrates and functions for the DYRK protein kinases
DYRK 蛋白激酶的新底物和功能
- 批准号:
BB/Y512527/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Training Grant
Norway. Neuropeptide origins; study of neuropeptide functions in choanoflagellates
挪威。
- 批准号:
BB/X018512/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
NSF PRFB FY 2023: Impact of Environment-Seagrass-Microbe Interactions on Seagrass Stress Response and Ecosystem Functions
NSF PRFB 2023 财年:环境-海草-微生物相互作用对海草应激反应和生态系统功能的影响
- 批准号:
2305691 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Fellowship Award
CAREER: Green Functions as a Service: Towards Sustainable and Efficient Distributed Computing Infrastructure
职业:绿色功能即服务:迈向可持续、高效的分布式计算基础设施
- 批准号:
2340722 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Theory and algorithms for a new class of computationally amenable nonconvex functions
一类新的可计算非凸函数的理论和算法
- 批准号:
2416250 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Conference: Modular forms, L-functions, and Eigenvarieties
会议:模形式、L 函数和特征变量
- 批准号:
2401152 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant