CAREER: Kinetic Theory of Irreversible Processes
职业:不可逆过程的动力学理论
基本信息
- 批准号:2141564
- 负责人:
- 金额:$ 63.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-01 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in part under the American Rescue Plan Act of 2021 (Public Law 117-2). This CAREER award supports bringing together theory, numerical simulations and spacecraft data analysis to advance our understanding of fundamental plasma processes. Plasmas are gases made of electrically charged particles, and they can be found everywhere in our universe. Neon lights, lightning, auroras, stars and the interplanetary space are all examples of matter in the plasma state. Electromagnetic interactions play a crucial role in the dynamics of plasmas, including plasma energization and heating. For example, such interactions are responsible for heating the outer solar atmosphere, the solar corona, to temperatures in excess of one million degrees. The wind of plasma continuously emitted by the sun into the interplanetary space, the solar wind, is also heated to temperatures higher than what current theories predict. One of the open questions in plasma physics is how the energy stored in the electric and magnetic fields can ultimately heat a plasma. This problem will be investigated with the support of this award by developing cutting-edge numerical tools complemented by theory and analysis of data from past and current space missions. The research will be integrated with an enhanced space physics education plan that will target underrepresented minority groups in STEM disciplines at all levels of education. Engaging activities will be organized through summer camps and showcase lessons to enhance student awareness about space physics and its impacts on life and technology.This award establishes a research program that addresses the interplay between kinetic effects and the dynamics on the large scales in turbulent systems such as the natural plasmas of the heliosphere. Most of the plasma environments encountered in nature and in the laboratory may be classified as weakly collisional or collisionless, in the sense that the timescales associated with collisional relaxation are orders of magnitude longer than the typical dynamical ones. As a consequence, plasmas are most often far from thermodynamic equilibrium, and transport models based on weak perturbations from such states do not apply. Instead, kinetic mechanisms such as wave particle interactions play a crucial role in the processes of energy dissipation and plasma energization. The research effort supported with this award aims to understand the two-way feedback between kinetic physics and large-scale dynamics to advance knowledge of the processes that govern the turbulent cascade, dissipation and particle energization in weakly collisional magnetized plasmas. To this end, an extended hybrid collisional kinetic model will be developed and used to investigate, for the first time, turbulence in weakly collisional magnetized plasmas. In-situ spacecraft data analysis from past and current space missions will be analyzed and compared with numerical and theoretical results. Results from this work will find application in heliospheric environments, but also in more exotic astrophysical systems such as stellar and pulsar winds, accretion disks around widely different central objects, and the interstellar medium.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的部分资金来自《2021年美国救援计划法案》(公法117-2)。这一职业奖支持将理论、数值模拟和航天器数据分析结合在一起,以促进我们对基本等离子体过程的理解。等离子体是由带电粒子组成的气体,它们在我们的宇宙中随处可见。霓虹灯、闪电、极光、恒星和星际空间都是物质处于等离子体状态的例子。电磁相互作用在等离子体的动力学中起着至关重要的作用,包括等离子体的能化和加热。例如,这种相互作用负责将太阳外层大气,即日冕加热到超过一百万度的温度。太阳持续发射到行星际空间的等离子体风,也就是太阳风,也被加热到比目前理论预测的更高的温度。等离子体物理学中的一个悬而未决的问题是,储存在电场和磁场中的能量如何最终加热等离子体。这一问题将在该奖项的支持下,通过开发尖端的数值工具,辅之以对过去和现在的空间飞行任务的理论和数据分析进行研究。这项研究将与一项强化的空间物理教育计划相结合,该计划将针对各级教育中STEM学科中代表性不足的少数群体。将通过夏令营和展示课程来组织引人入胜的活动,以提高学生对空间物理及其对生活和技术的影响的认识。该奖项建立了一个研究计划,旨在解决湍流系统(如日光层的自然等离子体)中的动力学效应和动力学之间的相互作用。在自然界和实验室中遇到的大多数等离子体环境可以被归类为弱碰撞或无碰撞环境,因为与碰撞弛豫相关的时间尺度比典型的动力学环境长一个数量级。其结果是,等离子体通常远离热力学平衡,基于这种状态的弱扰动的输运模型不适用。相反,波粒相互作用等动力学机制在能量耗散和等离子体能化过程中起着至关重要的作用。该奖项支持的研究工作旨在了解动力学物理和大规模动力学之间的双向反馈,以促进对控制弱碰撞磁化等离子体中湍流级联、耗散和粒子能量的过程的了解。为此,将发展一个扩展的混合碰撞动力学模型,并首次用于研究弱碰撞磁化等离子体中的湍流。将分析过去和当前空间飞行任务中航天器的现场数据分析,并将其与数值和理论结果进行比较。这项工作的成果将在日球层环境中得到应用,但也将应用于更奇异的天体物理系统,如恒星和脉冲星风、围绕着差异很大的中心物体的吸积盘以及星际介质。这一奖项反映了美国国家科学基金会的法定任务,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Particle-in-cell simulations of Alfvén wave parametric decay in a low-beta plasma
低 β 等离子体中阿尔文波参数衰变的粒子在细胞模拟
- DOI:10.1017/s0022377823000120
- 发表时间:2023
- 期刊:
- 影响因子:2.5
- 作者:González, C.A.;Innocenti, Maria Elena;Tenerani, Anna
- 通讯作者:Tenerani, Anna
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Tenerani其他文献
Anna Tenerani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna Tenerani', 18)}}的其他基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 63.72万 - 项目类别:
Standard Grant
Unified Framework for the Study of Alfven Wave Resonances, Magnetic Reconnection and Kelvin-Helmholtz Instabilities
阿尔文波共振、磁重联和开尔文-亥姆霍兹不稳定性研究的统一框架
- 批准号:
2108320 - 财政年份:2021
- 资助金额:
$ 63.72万 - 项目类别:
Continuing Grant
相似国自然基金
B 介子含粲遍举半轻衰变的高精度理论研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
热环境下双螺旋仿生微结构热塑复合材料抗冲击性能及强度理论研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
大尺寸量子点光谱和氧化动力学的理论研究
- 批准号:Z25B030011
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
能量采集机电系统动力学设计理论与调控方法
- 批准号:2025JJ20012
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于交互抑制理论研究舒泉贴对急性尿潴留缩尿肌-括约肌平衡动力学调控机制
- 批准号:2025JJ70259
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
低轨星座定位定轨理论与技术
- 批准号:JCZRQT202500073
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
高频静电驱动的软体气泵基础理论及关键技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
生物合成中多氧杂HDA多功能酶AbxF催化机制的多尺度理论计算与模拟
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
拓扑动力系统动力学性质与维数理论研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
薛定谔方程正规化解的存在性与动力学性态研究
- 批准号:2025JJ60067
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CDS&E:CAS:Automated Embedded Correlated Wavefunction Theory for Kinetic Modeling in Heterogeneous Catalysis
CDS
- 批准号:
2349619 - 财政年份:2024
- 资助金额:
$ 63.72万 - 项目类别:
Standard Grant
Collaborative Research: WoU-MMA: Coherent radio and x-ray precursor transients to gravitational wave events: Simulations in general relativity and kinetic theory
合作研究:WoU-MMA:引力波事件的相干射电和 X 射线前兆瞬变:广义相对论和动力学理论的模拟
- 批准号:
2307395 - 财政年份:2023
- 资助金额:
$ 63.72万 - 项目类别:
Standard Grant
Collaborative Research: WoU-MMA: Coherent radio and x-ray precursor transients to gravitational wave events: Simulations in general relativity and kinetic theory
合作研究:WoU-MMA:引力波事件的相干射电和 X 射线前兆瞬变:广义相对论和动力学理论的模拟
- 批准号:
2307394 - 财政年份:2023
- 资助金额:
$ 63.72万 - 项目类别:
Standard Grant
Inverse Problems Arising from Kinetic Theory and Applications
动力学理论及其应用产生的反问题
- 批准号:
2306221 - 财政年份:2023
- 资助金额:
$ 63.72万 - 项目类别:
Continuing Grant
Connecting Parton Cascade to QCDS Shear Viscosity for a Dynamical Model of Finite Temperature Kinetic Theory
将 Parton Cascade 连接到 QCDS 剪切粘度以建立有限温度动力学理论的动态模型
- 批准号:
2310021 - 财政年份:2023
- 资助金额:
$ 63.72万 - 项目类别:
Standard Grant
Optimal Transport Applications to Probability, Machine Learning, and Kinetic Theory
最优运输在概率、机器学习和动力学理论中的应用
- 批准号:
2205937 - 财政年份:2022
- 资助金额:
$ 63.72万 - 项目类别:
Standard Grant
Theory and Application of Kinetic Equations
动力学方程理论与应用
- 批准号:
RGPIN-2018-04331 - 财政年份:2022
- 资助金额:
$ 63.72万 - 项目类别:
Discovery Grants Program - Individual
Relativistic Asymmetric Magnetic Reconnection: Theory and Kinetic Modeling
相对论不对称磁重联:理论和动力学建模
- 批准号:
2205991 - 财政年份:2022
- 资助金额:
$ 63.72万 - 项目类别:
Continuing Grant
Collaborative Research: DMS/NIGMS 1: Mesoscale Kinetic Theory of Early Mitotic Spindle Organization
合作研究:DMS/NIGMS 1:早期有丝分裂纺锤体组织的中尺度动力学理论
- 批准号:
2153374 - 财政年份:2022
- 资助金额:
$ 63.72万 - 项目类别:
Standard Grant