EAGER: Language Learning through Machine Theory of Mind

EAGER:通过机器心理理论学习语言

基本信息

  • 批准号:
    2141751
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

As natural language systems become ubiquitous (e.g. phone trees, chatbots, and smart homes) they must learn to adapt to users by modeling them each as individuals with different abilities, knowledge, and tastes. Theory of mind is the human ability to reason about the hidden mental states of others, but is a complex phenomenon that does not emerge in children until late in their development compared to other more basic communicative skills. The questions of interest to this EAGER project are: (1) what makes this skill hard for children to learn, (2) what can computers learn from how children are taught, and (3) in what ways can machine learning models provide insight into human development. This project sits at this intersection of machine learning, developmental psychology, and pedagogy. This project includes formal models of information sharing and teaching grounded in shared referential games. Agents and children are tasked with asking an instructor to efficiently distinguish similar objects -- a task which requires understanding common ground and identifying distinguishing features. While the learner will often make ambiguous statements, the teacher will provide corrections and instruction to guide the learning process. This formulation allows for variation along several dimensions of relevance to successful communication: working memory, visual and lexical complexity, and specificity of instruction. Experiments with children will provide benchmarks against which computational agents can be compared, and experiments with agents will allow us to decompose the contribution of each of these factors to the difficulty of developing a theory of mind.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着自然语言系统变得无处不在(例如电话树、聊天机器人和智能家居),它们必须学会通过将用户建模为具有不同能力、知识和品味的个体来适应用户。心智理论是人类推理他人隐藏的心理状态的能力,但与其他更基本的沟通技能相比,它是一种复杂的现象,直到发展后期才会在儿童中出现。 这个 EAGER 项目感兴趣的问题是:(1) 是什么让儿童难以学习这项技能;(2) 计算机可以从儿童的教学方式中学到什么;(3) 机器学习模型可以通过哪些方式提供对人类发展的洞察。 该项目位于机器学习、发展心理学和教育学的交叉点。该项目包括基于共享参考游戏的信息共享和教学的正式模型。 特工和孩子们的任务是要求教练有效地区分相似的物体——这项任务需要理解共同点并识别区别特征。虽然学习者经常会做出模棱两可的陈述,但老师会提供纠正和指导来指导学习过程。这种表述允许在与成功沟通相关的几个维度上进行变化:工作记忆、视觉和词汇复杂性以及教学的特异性。对儿童的实验将提供比较计算代理的基准,而对代理的实验将使我们能够分解每个因素对发展心智理论的难度的贡献。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Symmetric Machine Theory of Mind
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Melanie Sclar;Graham Neubig;Yonatan Bisk
  • 通讯作者:
    Melanie Sclar;Graham Neubig;Yonatan Bisk
Computational Language Acquisition with Theory of Mind
计算语言习得与心理理论
Simulated Language Learning from Communicative Goals and Linguistic Input
从交际目标和语言输入模拟语言学习
Don’t Copy the Teacher: Data and Model Challenges in Embodied Dialogue
不要模仿老师:具身对话中的数据和模型挑战
EXCALIBUR: Encouraging and Evaluating Embodied Exploration
  • DOI:
    10.1109/cvpr52729.2023.01434
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao Zhu;Raghav Kapoor;So Yeon Min;Winson Han;Jiatai Li;Kaiwen Geng;Graham Neubig;Yonatan Bisk;Aniruddha Kembhavi;Luca Weihs
  • 通讯作者:
    Hao Zhu;Raghav Kapoor;So Yeon Min;Winson Han;Jiatai Li;Kaiwen Geng;Graham Neubig;Yonatan Bisk;Aniruddha Kembhavi;Luca Weihs
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yonatan Bisk其他文献

SOTOPIA-π: Interactive Learning of Socially Intelligent Language Agents
SOTOPIA-π:社交智能语言代理的交互式学习
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruiyi Wang;Haofei Yu;W. Zhang;Zhengyang Qi;Maarten Sap;Graham Neubig;Yonatan Bisk;Hao Zhu
  • 通讯作者:
    Hao Zhu
Balancing Shared Autonomy with Human-Robot Communication
平衡共享自主与人机通信
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rosario Scalise;Yonatan Bisk;Maxwell Forbes;Daqing Yi;Yejin Choi;S. Srinivasa
  • 通讯作者:
    S. Srinivasa
Worst of Both Worlds: Biases Compound in Pre-trained Vision-and-Language Models
两全其美:预训练视觉和语言模型中的偏见复合
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tejas Srinivasan;Yonatan Bisk
  • 通讯作者:
    Yonatan Bisk
Labeled Grammar Induction with Minimal Supervision
最少监督的标记语法归纳
WebQA: Multihop and Multimodal QA
WebQA:多跳和多模式 QA

Yonatan Bisk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Navigating Chemical Space with Natural Language Processing and Deep Learning
利用自然语言处理和深度学习驾驭化学空间
  • 批准号:
    EP/Y004167/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
SBIR Phase II: Intelligent Language Learning Environment
SBIR第二阶段:智能语言学习环境
  • 批准号:
    2335265
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Cooperative Agreement
The development and evaluation of a digital role playing game (RPG) as a tool to support foreign language learning
作为支持外语学习工具的数字角色扮演游戏(RPG)的开发和评估
  • 批准号:
    24K04095
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigating the potential for developing self-regulation in foreign language learners through the use of computer-based large language models and machine learning
通过使用基于计算机的大语言模型和机器学习来调查外语学习者自我调节的潜力
  • 批准号:
    24K04111
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Combining eye-tracking and comparative judgments to identify proficiency differences for more effective language learning
结合眼动追踪和比较判断来识别熟练程度差异,以实现更有效的语言学习
  • 批准号:
    24K16140
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Symbolic Learning with Neural Language Models
职业:使用神经语言模型进行符号学习
  • 批准号:
    2338833
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
FastMap-IMPACT: Brain mechanisms of rapid language learning: an Investigation of Memory in Patients and Ageing with Consolidation Theory
FastMap-IMPACT:快速语言学习的大脑机制:用巩固理论研究患者记忆和衰老
  • 批准号:
    EP/Y016815/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship
I-Corps: Translation potential of using artificial intelligence (AI) for an interactive and inclusive language-learning process designed for young children
I-Corps:使用人工智能 (AI) 为幼儿设计的交互式和包容性语言学习过程的翻译潜力
  • 批准号:
    2418277
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Research on personalization of spoken-dialogue-based computer-assisted-language-learning system
基于口语对话的计算机辅助语言学习系统的个性化研究
  • 批准号:
    23K24962
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Identifying the role of sensorimotor feedback as a mechanism for language learning in the first three years of life
确定感觉运动反馈作为生命前三年语言学习机制的作用
  • 批准号:
    EP/X042405/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了