Using Artificial Intelligence to Generate Interventions for Enhancing Student Performance in College STEM Courses

使用人工智能生成干预措施以提高学生在大学 STEM 课程中的表现

基本信息

  • 批准号:
    2142558
  • 负责人:
  • 金额:
    $ 59.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

This project aims to serve the national interest by designing, developing, and evaluating a novel platform to improve academic performance in undergraduate STEM courses. The “Messages from A Future You” (MFAFY) application will send students just-in-time messages via a smartphone to create a coaching relationship with a future self or other student-selected avatar. The timing and content of these messages will be automatically generated using artificial intelligence based on student scores, attitudes, behaviors, and social interactions. Students who face academic difficulties, and are hesitant to take advantage of formal advising, will benefit from this personalized delivery system. The MFAFY system will contribute to a strong STEM workforce by increasing retention rates, and by improving both the number and quality of STEM degree students. The data collected by the application will add to understanding of the types of experiences faced by undergraduate students. This project will synthesize data on socio-economic factors, science identity, in-course assessments, and fine-grained multidimensional measures of daily attitudes, behaviors, and social interactions. Data will be collected using the ODIN app which prompts students based on rules referencing time/date, location (GPS), and social interaction (Bluetooth). Data will be clustered to discover a typology of student “stories” (experiential trajectories). Counselors will customize messages for each story type, over the semester. The MFAFY app will incorporate machine learning models which forecast story type, together with these messages. MFAFY will be evaluated via a randomized controlled effectiveness trial. The NSF IUSE: EHR Program supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过设计,开发和评估一个新的平台来提高本科STEM课程的学习成绩,从而为国家利益服务。“来自未来的你的消息”(MFAFY)应用程序将通过智能手机向学生发送即时消息,以与未来的自己或其他学生选择的化身建立教练关系。这些信息的时间和内容将根据学生的分数、态度、行为和社交互动使用人工智能自动生成。面临学业困难的学生,以及不愿意利用正式建议的学生,将从这种个性化的交付系统中受益。MFAFY系统将通过提高保留率和提高STEM学位学生的数量和质量,为强大的STEM劳动力做出贡献。应用程序收集的数据将增加对本科生所面临的经验类型的理解。该项目将综合社会经济因素,科学身份,课程评估和日常态度,行为和社会互动的细粒度多维测量数据。数据将使用ODIN应用程序收集,该应用程序根据参考时间/日期,位置(GPS)和社交互动(蓝牙)的规则提示学生。将对数据进行聚类,以发现学生“故事”(经验轨迹)的类型学。辅导员将定制每一个故事类型的消息,在学期。MFAFY应用程序将结合机器学习模型,预测故事类型以及这些消息。MFAFY将通过随机对照有效性试验进行评价。NSF IUSE:EHR计划支持研究和开发项目,以提高所有学生STEM教育的有效性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Power of Personalization and Contextualization: Early Student Performance Forecasting with Language Models
个性化和情境化的力量:使用语言模型预测早期学生表现
A Trajectory-Clustering Framework for Assessing AI-Based Adaptive Interventions in Undergraduate STEM Learning
用于评估本科生 STEM 学习中基于人工智能的自适应干预的轨迹聚类框架
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohammad Hasan其他文献

A New Approach to Solve Quadratic Equation Using Genetic Algorithm
遗传算法求解二次方程的新方法
  • DOI:
    10.1007/978-3-030-52856-0_15
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bibhas Roy Chowdhury;Md. Sabir Hossain;A. Ahmad;Mohammad Hasan;Md. Al
  • 通讯作者:
    Md. Al
On-farm feeding and feed management in aquaculture
水产养殖中的农场饲养和饲料管理
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Hasan;Mohammad Hasan
  • 通讯作者:
    Mohammad Hasan
New evidence from an alternative methodological approach to the defence spending‐economic growth causality issue in the case of mainland China
中国大陆国防开支与经济增长因果关系问题的替代方法论的新证据
  • DOI:
    10.1108/01443589710167347
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    A. M. Masih;Rumi Masih;Mohammad Hasan
  • 通讯作者:
    Mohammad Hasan
SEAWEED CULTURE, POST-HARVEST PROCESSING, AND MARKET GENERATION FOR EMPLOYMENT OF COASTAL POOR COMMUNITIES IN COX'S BAZAR
海藻养殖、收获后加工和为考克斯巴扎尔沿海贫困社区创造就业机会
  • DOI:
    10.46909/alse-562098
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Farhaduzzaman;Suzan Khan;Mohammad Hasan;Rashedul Islam;Mahadi Hasan Osman;Neamul Hasan Shovon;Sayeed Mahmood Belal Haider;M. Kunda;Tarikul Islam;Md. Simul Bhuyan
  • 通讯作者:
    Md. Simul Bhuyan
Importance of mutual relations on customer satisfaction in industries with no/low direct contact with customers
在与客户没有/很少直接接触的行业中,相互关系对客户满意度的重要性
  • DOI:
    10.5897/ajbm11.2984
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. S. Ardabili;S. Daryani;M. Molaie;E. Rasooli;Mohammad Hasan;Kheiravar
  • 通讯作者:
    Kheiravar

Mohammad Hasan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mohammad Hasan', 18)}}的其他基金

Unravelling interfacial dynamics at the plasma-liquid boundary
揭示等离子体-液体边界处的界面动力学
  • 批准号:
    EP/T000104/1
  • 财政年份:
    2019
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Research Grant
III: Small: Geometric Constraint based Concept Keyword Embedding for Domain-neutral Knowledge Graph Construction
III:小:基于几何约束的概念关键词嵌入,用于领域中立的知识图谱构建
  • 批准号:
    1909916
  • 财政年份:
    2019
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Standard Grant
CAREER: A novel framework for mining graph patterns in large biological and social networks
职业:在大型生物和社交网络中挖掘图形模式的新颖框架
  • 批准号:
    1149851
  • 财政年份:
    2012
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
  • 批准号:
    2342747
  • 财政年份:
    2024
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Standard Grant
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
  • 批准号:
    MR/Y034422/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Research Grant
Using artificial intelligence to identify spatio-temporal mechanisms of cell competition
利用人工智能识别细胞竞争的时空机制
  • 批准号:
    BB/Y002709/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Research Grant
Using Artificial Intelligence to Solve Complex Flow Equations in a Wet Gas Environment
使用人工智能求解湿气体环境中的复杂流量方程
  • 批准号:
    10091110
  • 财政年份:
    2024
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Collaborative R&D
ICF: Using Explainable Artificial Intelligence to predict future stroke using routine historical investigations
ICF:使用可解释的人工智能通过常规历史调查来预测未来中风
  • 批准号:
    MR/Y503472/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Research Grant
SBIR Phase II: A Manufacturing Monitoring System Using Sound Spectrograms and Artificial Intelligence
SBIR 第二阶段:使用声谱图和人工智能的制造监控系统
  • 批准号:
    2335395
  • 财政年份:
    2024
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Cooperative Agreement
I-Corps: Translation potential of using artificial intelligence (AI) for an interactive and inclusive language-learning process designed for young children
I-Corps:使用人工智能 (AI) 为幼儿设计的交互式和包容性语言学习过程的翻译潜力
  • 批准号:
    2418277
  • 财政年份:
    2024
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
  • 批准号:
    2342748
  • 财政年份:
    2024
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Standard Grant
SBIR Phase I: An Artificial Intelligence System to Accelerate Semiconductor Production using Physics-embedded Lithographic Foundation Model
SBIR 第一阶段:使用物理嵌入式光刻基础模型加速半导体生产的人工智能系统
  • 批准号:
    2336079
  • 财政年份:
    2024
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
  • 批准号:
    2342746
  • 财政年份:
    2024
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了