CAREER: Understanding the Fundamental Dynamics of Angular Momentum Carrying Acoustic Wave Propagation

职业:了解角动量携带声波传播的基本动力学

基本信息

  • 批准号:
    2142555
  • 负责人:
  • 金额:
    $ 61.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) grant will enable the development of new knowledge related to the propagation of angular momentum carrying acoustic waves in anisotropic biomaterials, which is critical for their use in biomedical imaging, therapies, and treatment. Angular momentum carrying acoustic waves, such as acoustic vortex beam, are a special type of sound waves that have a rotating pressure field or energy flux. Previous studies indicated that these waves could have many potential biomedical applications, including medical imaging with better resolution than traditional ultrasound imaging and targeted ultrasonic removal of kidney stones and blood clots with higher efficacy than classical focused ultrasound therapies. However, these studies focused on waves propagating underwater and ignored the anisotropy and heterogeneity of biomaterials such as muscle fibers. Recent theoretical studies have indicated that acoustic angular momenta will couple when propagating in anisotropic or heterogeneity materials, altering the propagation path of the wave, and potentially impeding their reliable use in the suggested biomedical applications. The research supported by this CAREER award seeks to understand the fundamental coupling mechanism between different acoustic angular momenta, especially when propagating in anisotropic biomaterials, through modeling and experimentation. This understanding will be applied to demonstrate imaging and blood clot thrombolysis capabilities through anisotropic media. The results from this research will advance knowledge in acoustics, dynamics, biomechanics, as well as biomedical engineering, and can potentially lead to novel medical diagnostics and therapies. This award will positively impact STEM education through collaboration with existing programs at Georgia Tech aimed to engage students and high school science teachers from the Atlanta Public Schools and Atlanta International School, especially from currently underrepresented groups, and to promote their participation in research. This award will leverage the Georgia Tech InVenture Challenge to motivate undergraduate students and encourage them to compete in this interdisciplinary innovation competition using knowledge learned from this research. The objective of this research is to create and experimentally validate new models that accurately predict the propagation of angular momentum carrying acoustic waves in anisotropic media. Intrinstic and extrinsic acoustic waves become coupled when propagating in anisotropic materials, thus shifting the wave propagation trajectory. The central hypothesis of this research is that this coupling occurs through Coriolis effects resulting from rotations induced by the wave-medium interactions. The researchers will test this hypothesis in theoretical models and in experiments conducted underwater and in soft anisotropic media. They will probe the ability to translate this understanding to the suggested imaging and thrombolysis capabilities experimentally using anisotropic tissue mimicking gels.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这种教师的早期职业发展(职业)赠款将能够发展与各向异性生物材料中携带声波的角动量传播有关的新知识,这对于它们在生物医学成像,疗法和治疗中的使用至关重要。携带声波的角动量(例如声涡流束)是具有旋转压力场或能量通量的特殊类型的声波。先前的研究表明,这些波浪可能具有许多潜在的生物医学应用,包括比传统的超声成像更好的分辨率和靶向超声检查肾结石的超声去除和具有更高疗效的血凝块的超声超声检查。然而,这些研究集中在传播水下的波浪上,忽略了生物材料(例如肌肉纤维)的各向异性和异质性。最近的理论研究表明,在传播各向异性或异质性材料,改变波浪的传播路径并可能阻碍其在建议的生物医学应用中的可靠用途时,声学角度运动会将逐渐发展。该职业奖支持的研究旨在了解不同声学角动量之间的基本耦合机制,尤其是通过建模和实验在各向异性生物材料中传播时。这种理解将应用于通过各向异性培养基展示成像和血凝块溶栓功能。这项研究的结果将提高有关声学,动力学,生物力学以及生物医学工程的知识,并有可能导致新型的医学诊断和疗法。该奖项将通过与佐治亚理工学院现有计划的合作来积极影响STEM教育,旨在吸引来自亚特兰大公立学校和亚特兰大国际学校的学生和高中科学教师,尤其是目前代表性不足的群体,并促进他们参与研究。该奖项将利用从这项研究中学到的知识来激励佐治亚州科技创造挑战挑战,并鼓励他们在这项跨学科创新竞争中竞争。这项研究的目的是创建和实验验证新模型,以准确预测各向异性介质中携带声波的角动量的传播。内部和外部声波在各向异性材料中传播时会耦合,从而改变了波传播轨迹。这项研究的中心假设是,这种耦合是通过波浪中相互作用引起的旋转引起的科里奥利效应。研究人员将在理论模型以及在水下和软各向异性培养基中进行的实验中检验这一假设。 他们将使用各向异性组织模仿凝胶实验性地将这种理解转化为建议的成像和溶栓功能的能力。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来获得支持的。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chengzhi Shi其他文献

Design and simulation of acoustic vortex wave arrays for long-range underwater communication.
用于远程水下通信的声涡波阵列的设计和仿真。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Mark E. Kelly;Chengzhi Shi
  • 通讯作者:
    Chengzhi Shi
Path planning of mobile robot based on improved A∗ algorithm
基于改进A*算法的移动机器人路径规划
Ray tracing model for long-range acoustic vortex wave propagation underwater
水下远距离声涡波传播的射线追踪模型
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mark E. Kelly;Zheguang Zou;Likun Zhang;Chengzhi Shi
  • 通讯作者:
    Chengzhi Shi
A drug‐selectable acoustic reporter gene system for human cell ultrasound imaging
用于人体细胞超声成像的药物选择性声学报告基因系统
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Alessandro R. Howells;Phoebe J. Welch;John Kim;C. Forest;Chengzhi Shi;Xiaojun Lian
  • 通讯作者:
    Xiaojun Lian

Chengzhi Shi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chengzhi Shi', 18)}}的其他基金

PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
  • 批准号:
    2423820
  • 财政年份:
    2024
  • 资助金额:
    $ 61.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 61.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2037565
  • 财政年份:
    2021
  • 资助金额:
    $ 61.01万
  • 项目类别:
    Standard Grant
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
  • 批准号:
    2102129
  • 财政年份:
    2021
  • 资助金额:
    $ 61.01万
  • 项目类别:
    Standard Grant

相似国自然基金

基于场景理解的全景视频智能压缩关键技术研究
  • 批准号:
    62371310
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
典型热带生态系统大气零价汞源汇格局变化及机理解析
  • 批准号:
    42377255
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向智能视频理解的时序结构化解析与语义细致化识别研究
  • 批准号:
    62306239
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度理解的大规模互联网虚假新闻检测研究
  • 批准号:
    62302333
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SlCNR8调控番茄植株衰老的机理解析
  • 批准号:
    32360766
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAREER: Understanding Collisionless Magnetic Reconnection as a Fundamental Heliospheric Process
职业:理解无碰撞磁重联作为基本的日光层过程
  • 批准号:
    2338131
  • 财政年份:
    2024
  • 资助金额:
    $ 61.01万
  • 项目类别:
    Continuing Grant
CAREER: Towards a Fundamental Understanding of Interface Strain-Driven Pseudomorphic Phase Transformation in Multilayered Nanocomposites
职业生涯:对多层纳米复合材料中界面应变驱动的赝晶相变有一个基本的了解
  • 批准号:
    2340965
  • 财政年份:
    2024
  • 资助金额:
    $ 61.01万
  • 项目类别:
    Standard Grant
CAREER: Fundamental Understanding of Thermal Transport at the Single Molecule Level
职业:对单分子水平热传输的基本了解
  • 批准号:
    2239004
  • 财政年份:
    2023
  • 资助金额:
    $ 61.01万
  • 项目类别:
    Continuing Grant
CAREER: Understanding and Overcoming the Fundamental Barriers to the Direct Reduction of Aluminum Hydroxide to Aluminum Metal
职业:了解并克服氢氧化铝直接还原为金属铝的基本障碍
  • 批准号:
    2047851
  • 财政年份:
    2021
  • 资助金额:
    $ 61.01万
  • 项目类别:
    Standard Grant
CAREER: Toward a Fundamental Understanding of Why Thrombus Dissolves, Persists, or Breaks Off
职业生涯:对血栓为何溶解、持续或破裂有一个基本的了解
  • 批准号:
    2046148
  • 财政年份:
    2021
  • 资助金额:
    $ 61.01万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了