CAREER: Understanding the Fundamental Dynamics of Angular Momentum Carrying Acoustic Wave Propagation

职业:了解角动量携带声波传播的基本动力学

基本信息

  • 批准号:
    2142555
  • 负责人:
  • 金额:
    $ 61.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) grant will enable the development of new knowledge related to the propagation of angular momentum carrying acoustic waves in anisotropic biomaterials, which is critical for their use in biomedical imaging, therapies, and treatment. Angular momentum carrying acoustic waves, such as acoustic vortex beam, are a special type of sound waves that have a rotating pressure field or energy flux. Previous studies indicated that these waves could have many potential biomedical applications, including medical imaging with better resolution than traditional ultrasound imaging and targeted ultrasonic removal of kidney stones and blood clots with higher efficacy than classical focused ultrasound therapies. However, these studies focused on waves propagating underwater and ignored the anisotropy and heterogeneity of biomaterials such as muscle fibers. Recent theoretical studies have indicated that acoustic angular momenta will couple when propagating in anisotropic or heterogeneity materials, altering the propagation path of the wave, and potentially impeding their reliable use in the suggested biomedical applications. The research supported by this CAREER award seeks to understand the fundamental coupling mechanism between different acoustic angular momenta, especially when propagating in anisotropic biomaterials, through modeling and experimentation. This understanding will be applied to demonstrate imaging and blood clot thrombolysis capabilities through anisotropic media. The results from this research will advance knowledge in acoustics, dynamics, biomechanics, as well as biomedical engineering, and can potentially lead to novel medical diagnostics and therapies. This award will positively impact STEM education through collaboration with existing programs at Georgia Tech aimed to engage students and high school science teachers from the Atlanta Public Schools and Atlanta International School, especially from currently underrepresented groups, and to promote their participation in research. This award will leverage the Georgia Tech InVenture Challenge to motivate undergraduate students and encourage them to compete in this interdisciplinary innovation competition using knowledge learned from this research. The objective of this research is to create and experimentally validate new models that accurately predict the propagation of angular momentum carrying acoustic waves in anisotropic media. Intrinstic and extrinsic acoustic waves become coupled when propagating in anisotropic materials, thus shifting the wave propagation trajectory. The central hypothesis of this research is that this coupling occurs through Coriolis effects resulting from rotations induced by the wave-medium interactions. The researchers will test this hypothesis in theoretical models and in experiments conducted underwater and in soft anisotropic media. They will probe the ability to translate this understanding to the suggested imaging and thrombolysis capabilities experimentally using anisotropic tissue mimicking gels.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项教师早期职业发展(Career)资助将促进与各向异性生物材料中携带声波的角动量传播相关的新知识的发展,这对于生物医学成像、治疗和治疗的应用至关重要。角动量携带声波,如声涡束,是一种特殊类型的声波,具有旋转的压力场或能量通量。先前的研究表明,这些波可能具有许多潜在的生物医学应用,包括比传统超声成像分辨率更高的医学成像,以及比传统聚焦超声治疗更有效的靶向超声去除肾结石和血凝块。然而,这些研究主要集中在水下传播的波浪上,而忽略了肌肉纤维等生物材料的各向异性和非均质性。最近的理论研究表明,声角动量在各向异性或非均质材料中传播时会耦合,从而改变波的传播路径,并可能阻碍其在建议的生物医学应用中的可靠使用。这项由CAREER奖支持的研究旨在通过建模和实验来理解不同声学角动量之间的基本耦合机制,特别是在各向异性生物材料中传播时。这种理解将应用于通过各向异性介质演示成像和血凝块溶栓能力。这项研究的结果将促进声学、动力学、生物力学以及生物医学工程方面的知识,并可能导致新的医学诊断和治疗。该奖项将通过与佐治亚理工学院现有项目的合作,积极影响STEM教育,这些项目旨在吸引来自亚特兰大公立学校和亚特兰大国际学校的学生和高中科学教师,特别是来自目前代表性不足的群体的学生和高中科学教师,并促进他们参与研究。该奖项将利用佐治亚理工学院创新挑战赛来激励本科生,并鼓励他们利用从这项研究中学到的知识参加这项跨学科创新竞赛。本研究的目的是建立并实验验证能准确预测角动量携带声波在各向异性介质中传播的新模型。声波在各向异性材料中传播时,会发生耦合,从而改变声波的传播轨迹。本研究的中心假设是,这种耦合是通过波介质相互作用引起的旋转引起的科里奥利效应发生的。研究人员将在理论模型和在水下和软各向异性介质中进行的实验中验证这一假设。他们将探索利用各向异性组织模拟凝胶将这种理解转化为建议的成像和溶栓能力的能力。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chengzhi Shi其他文献

Design and simulation of acoustic vortex wave arrays for long-range underwater communication.
用于远程水下通信的声涡波阵列的设计和仿真。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Mark E. Kelly;Chengzhi Shi
  • 通讯作者:
    Chengzhi Shi
Ray tracing model for long-range acoustic vortex wave propagation underwater
水下远距离声涡波传播的射线追踪模型
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mark E. Kelly;Zheguang Zou;Likun Zhang;Chengzhi Shi
  • 通讯作者:
    Chengzhi Shi
A drug‐selectable acoustic reporter gene system for human cell ultrasound imaging
用于人体细胞超声成像的药物选择性声学报告基因系统
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Alessandro R. Howells;Phoebe J. Welch;John Kim;C. Forest;Chengzhi Shi;Xiaojun Lian
  • 通讯作者:
    Xiaojun Lian
Bit Whisperer: Enabling Ad-hoc, Short-range, Walk-Up-and-Share Data Transmissions via Surface-restricted Acoustics
Bit Whisperer:通过表面受限声学实现临时、短距离、步行和共享数据传输

Chengzhi Shi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chengzhi Shi', 18)}}的其他基金

PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
  • 批准号:
    2423820
  • 财政年份:
    2024
  • 资助金额:
    $ 61.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 61.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2037565
  • 财政年份:
    2021
  • 资助金额:
    $ 61.01万
  • 项目类别:
    Standard Grant
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
  • 批准号:
    2102129
  • 财政年份:
    2021
  • 资助金额:
    $ 61.01万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Understanding Collisionless Magnetic Reconnection as a Fundamental Heliospheric Process
职业:理解无碰撞磁重联作为基本的日光层过程
  • 批准号:
    2338131
  • 财政年份:
    2024
  • 资助金额:
    $ 61.01万
  • 项目类别:
    Continuing Grant
CAREER: Towards a Fundamental Understanding of Interface Strain-Driven Pseudomorphic Phase Transformation in Multilayered Nanocomposites
职业生涯:对多层纳米复合材料中界面应变驱动的赝晶相变有一个基本的了解
  • 批准号:
    2340965
  • 财政年份:
    2024
  • 资助金额:
    $ 61.01万
  • 项目类别:
    Standard Grant
CAREER: Fundamental Understanding of Thermal Transport at the Single Molecule Level
职业:对单分子水平热传输的基本了解
  • 批准号:
    2239004
  • 财政年份:
    2023
  • 资助金额:
    $ 61.01万
  • 项目类别:
    Continuing Grant
CAREER: Understanding and Overcoming the Fundamental Barriers to the Direct Reduction of Aluminum Hydroxide to Aluminum Metal
职业:了解并克服氢氧化铝直接还原为金属铝的基本障碍
  • 批准号:
    2047851
  • 财政年份:
    2021
  • 资助金额:
    $ 61.01万
  • 项目类别:
    Standard Grant
CAREER: Toward a Fundamental Understanding of Why Thrombus Dissolves, Persists, or Breaks Off
职业生涯:对血栓为何溶解、持续或破裂有一个基本的了解
  • 批准号:
    2046148
  • 财政年份:
    2021
  • 资助金额:
    $ 61.01万
  • 项目类别:
    Standard Grant
CAREER: Phonon Scattering By Electrons: From Fundamental Understanding To Thermal Transport Control
职业:电子声子散射:从基本理解到热传输控制
  • 批准号:
    1846927
  • 财政年份:
    2019
  • 资助金额:
    $ 61.01万
  • 项目类别:
    Standard Grant
CAREER: Understanding the fundamental mechanisms of vesiculation and solute encapsulation of smectic phospholipid films on cellulose
职业:了解纤维素上近晶磷脂膜的囊泡化和溶质封装的基本机制
  • 批准号:
    1848573
  • 财政年份:
    2019
  • 资助金额:
    $ 61.01万
  • 项目类别:
    Continuing Grant
CAREER: SusChEM: Heavy Atom Isotope Effects in Carbon Dioxide Fixation Catalysis: Fundamental Understanding and Catalyst Discovery
职业:SusChEM:二氧化碳固定催化中的重原子同位素效应:基本理解和催化剂发现
  • 批准号:
    1652606
  • 财政年份:
    2017
  • 资助金额:
    $ 61.01万
  • 项目类别:
    Continuing Grant
CAREER: Leveraging a fast-evolving kinase family to gain fundamental understanding of kinase evolution
职业:利用快速进化的激酶家族获得对激酶进化的基本了解
  • 批准号:
    1553334
  • 财政年份:
    2016
  • 资助金额:
    $ 61.01万
  • 项目类别:
    Continuing Grant
CAREER: Fundamental Understanding of Self-Assembly by Peptide-Polymer Conjugates in Creating Functional Biomaterials from Multiscale Simulations
职业:通过多尺度模拟创建功能性生物材料时对肽-聚合物缀合物自组装的基本理解
  • 批准号:
    1554508
  • 财政年份:
    2016
  • 资助金额:
    $ 61.01万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了