CAREER:Unraveling the metabolic networks underlying plant stress adaptation

职业:揭示植物逆境适应的代谢网络

基本信息

  • 批准号:
    2142898
  • 负责人:
  • 金额:
    $ 113.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-01 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117- 2). Plants must constantly deal with adverse environmental changes, which often negatively impacts their growth. For instance, plants with continuously enhanced defense frequently have compromised growth and vice versa. This growth-defense tradeoff is largely due to limited resources, which are used to produce costly defense metabolites. This issue has become more pressing in recent years with ongoing climate change, which accelerates pathogen infection and pest infestation. However, our understanding of how plants simultaneously coordinate defense and growth remains scarce. This proposed research will reveal mechanisms underlying growth regulation governed by a class of stress compounds called aldoximes. Aldoximes are linked to both plant defense - they are precursors of defense compounds and are induced by stresses - and growth - they affect the production of the plant growth hormone auxins as well as phenylpropanoids such as lignin. This project will elucidate how auxins are made from aldoximes and how aldoximes impede phenylpropanoid production in plants. Completion of this project will provide fundamental understanding of plant metabolic networks coordinating hormones, defense compounds, and lignin under stress conditions. The outcome of this project will provide opportunities to enhance levels of phenylpropanoids such as anthocyanins in crops, and will help foster a competitive and successful agriculture workforce. This project also includes a K-12 educational activity called Phyto-Detective, which will develop a series of videos aimed to raise awareness of phytochemicals for a young student audience. Aldoximes are stress-inducive compounds and are precursors of defense compounds. In addition, they affect plant growth through modulating the production of plant growth hormone auxins and phenylpropanoids. The accumulation of aldoximes represses phenylpropanoid biosynthesis partially through the transcriptional activation of the F-box genes that function in the degradation of phenylalanine ammonia lyase (PAL). Since PAL functions at the entry point of the phenylpropanoid pathway, aldoxime accumulation shuts down the entire phenylpropanoid pathway. Various species produce two major natural auxins, indole-3-acetic acid (IAA) and phenyl acetic acid (PAA), from their respective aldoximes, indicating the significance of aldoxime metabolism in a multitude of different plants. Although the aldoxime-mediated metabolic network plays a crucial role in stress-triggered growth regulation in plants, molecular mechanisms underlying aldoxime-mediated phenylpropanoid repression and aldoxime-derived auxin production remain elusive. This project will elucidate this hidden metabolic network using two model systems, Arabidopsis and tomato. Using omics and genetics approaches, this project will identify the metabolic route of aldoxime-derived auxin production, determine mechanisms of aldoxime-mediated phenylpropanoid repression, and elucidate the roles of aldoxime metabolism in plant stress adaptation. The educational goal is to foster the next generation of the agriculture workforce and increase public awareness of plants and plant-based compounds. The production and dissemination of educational videos for young students through summer undergraduate interns and a K-12 teacher conference, respectively, will provide educational tools to raise awareness of phytochemicals to the public. In addition, graduate students and postdoctoral associates will receive comprehensive research training while participating in this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分根据2021年美国救援计划法案(公法117- 2)资助。植物必须不断应对不利的环境变化,这往往会对它们的生长产生负面影响。例如,防御能力不断增强的植物往往会损害生长,反之亦然。这种生长-防御的权衡在很大程度上是由于有限的资源,这些资源用于生产昂贵的防御代谢物。近年来,随着持续的气候变化,这一问题变得更加紧迫,气候变化加速了病原体感染和虫害。然而,我们对植物如何同时协调防御和生长的理解仍然很少。这项拟议的研究将揭示由一类称为醛肟的应激化合物控制的生长调节机制。醛肟与植物防御(它们是防御化合物的前体,并由胁迫诱导)和生长(它们影响植物生长激素生长素以及苯丙素类化合物如木质素的产生)有关。这个项目将阐明生长素是如何从醛肟和醛肟如何阻碍植物中苯丙素的生产。该项目的完成将提供植物代谢网络协调激素,防御化合物和木质素在胁迫条件下的基本理解。该项目的成果将为提高作物中花青素等苯丙素类化合物的水平提供机会,并将有助于培养有竞争力和成功的农业劳动力。该项目还包括一项名为植物侦探的K-12教育活动,该活动将制作一系列视频,旨在提高年轻学生观众对植物化学物质的认识。醛肟是应激诱导化合物,并且是防御化合物的前体。此外,它们通过调节植物生长激素生长素和苯丙素类的产生来影响植物生长。醛肟的积累部分地通过在苯丙氨酸解氨酶(PAL)的降解中起作用的F-box基因的转录激活来抑制苯丙素类生物合成。由于PAL在类苯丙素途径的入口点起作用,醛肟积累关闭了整个类苯丙素途径。不同的物种产生两种主要的天然生长素,吲哚-3-乙酸(IAA)和苯乙酸(PAA),从它们各自的醛肟,表明醛肟代谢在许多不同的植物中的意义。虽然醛肟介导的代谢网络在植物胁迫触发的生长调节中起着至关重要的作用,但醛肟介导的苯丙素抑制和醛肟衍生的生长素产生的分子机制仍然是难以捉摸的。本计画将利用拟南芥与番茄两个模式系统来阐明这个隐藏的代谢网路。利用组学和遗传学方法,本项目将确定醛肟衍生的生长素生产的代谢途径,确定醛肟介导的苯丙素阻遏的机制,并阐明醛肟代谢在植物逆境适应中的作用。教育目标是培养下一代农业劳动力,提高公众对植物和植物化合物的认识。分别通过暑期本科生实习生和K-12教师会议为青年学生制作和传播教育录像,将提供教育工具,提高公众对植物化学物质的认识。此外,研究生和博士后将在参与该项目的同时接受全面的研究培训。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Altered methionine metabolism impacts phenylpropanoid production and plant development in Arabidopsis thaliana.
  • DOI:
    10.1111/tpj.16370
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Doosan Shin;Veronica C. Perez;Gabriella K. Dickinson;Haohao Zhao;Ru Dai;Breanna M Tomiczek;K. H. Cho;Ning Zhu;J. Koh;Alexander Grenning;Jeongim Kim
  • 通讯作者:
    Doosan Shin;Veronica C. Perez;Gabriella K. Dickinson;Haohao Zhao;Ru Dai;Breanna M Tomiczek;K. H. Cho;Ning Zhu;J. Koh;Alexander Grenning;Jeongim Kim
Metabolic link between auxin production and specialized metabolites in Sorghum bicolor.
高粱生长素产生和特殊代谢物之间的代谢联系。
  • DOI:
    10.1093/jxb/erac421
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Perez,VeronicaC;Dai,Ru;Tomiczek,Breanna;Mendoza,Jorrel;Wolf,EmilySA;Grenning,Alexander;Vermerris,Wilfred;Block,AnnaK;Kim,Jeongim
  • 通讯作者:
    Kim,Jeongim
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeongim Kim其他文献

SbCYP79A61 Produces Phenylacetaldoxime, a Precursor of Benzyl Cyanide and Phenylacetic Acid in Sorghum bicolor
SbCYP79A61 在高粱中产生苯乙醛肟,苯乙醛肟是苯乙腈和苯乙酸的前体
  • DOI:
    10.1101/2022.05.11.491506
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Veronica C. Perez;Ru Dai;Breanna M Tomiczek;Jorrel Mendoza;Emily Wolf;Alexander J. Grenning;W. Vermerris;A. Block;Jeongim Kim
  • 通讯作者:
    Jeongim Kim
Postharvest storage temperature strategies affect anthocyanin levels, total phenolic content, antioxidant activity, chemical attributes of juice, and physical qualities of blood orange fruit
  • DOI:
    10.1016/j.focha.2024.100722
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Fariborz Habibi;Muhammad A. Shahid;Robert Logan Spicer;Cătălin Voiniciuc;Jeongim Kim;Frederick G. Gmitter Jr.;Jeffrey K. Brecht;Ali Sarkhosh
  • 通讯作者:
    Ali Sarkhosh
Aldoxime Metabolism Is Linked to Phenylpropanoid Production in Camelina sativa
醛肟代谢与亚麻荠中苯丙素的产生有关
  • DOI:
    10.3389/fpls.2020.00017
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Dingpeng Zhang;Y. Song;Ru Dai;Tong;Jeongim Kim
  • 通讯作者:
    Jeongim Kim
Aldoximes: compounds at the crossroads of multiple metabolic pathways in plant
醛肟:植物中多种代谢途径十字路口的化合物
  • DOI:
    10.1007/s11101-024-09950-y
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Doosan Shin;Veronica C. Perez;Jeongim Kim
  • 通讯作者:
    Jeongim Kim
Genome-wide gene network uncover temporal and spatial changes of genes in auxin homeostasis during fruit development in strawberry (F. × ananassa)
  • DOI:
    10.1186/s12870-024-05577-5
  • 发表时间:
    2024-09-20
  • 期刊:
  • 影响因子:
    4.800
  • 作者:
    Yoon Jeong Jang;Taehoon Kim;Makou Lin;Jeongim Kim;Kevin Begcy;Zhongchi Liu;Seonghee Lee
  • 通讯作者:
    Seonghee Lee

Jeongim Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

RUI: BIOPOLYMER - BIObricks POLYketide Metabolic EngineeRing platform for unraveling the biosynthesis of higher anthracyclines
RUI:BIOPOLYMER - BIObricks 聚酮化合物代谢工程平台,用于揭示高级蒽环类药物的生物合成
  • 批准号:
    2321976
  • 财政年份:
    2024
  • 资助金额:
    $ 113.89万
  • 项目类别:
    Standard Grant
Unraveling the adaptive evolution of gut microbes through a novel metabolic pathway of a saccharide composing of host derived-mucin glycan
通过由宿主衍生的粘蛋白聚糖组成的糖类的新代谢途径揭示肠道微生物的适应性进化
  • 批准号:
    23KJ1259
  • 财政年份:
    2023
  • 资助金额:
    $ 113.89万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Unraveling mechanisms by which cervicovaginal microbiota can promote or prevent cervical remodeling and preterm birth
揭示宫颈阴道微生物群促进或预防宫颈重塑和早产的机制
  • 批准号:
    10800388
  • 财政年份:
    2023
  • 资助金额:
    $ 113.89万
  • 项目类别:
Unraveling the contribution of gut microbiome in trichloroethene-mediated autoimmunity
揭示肠道微生物组在三氯乙烯介导的自身免疫中的作用
  • 批准号:
    10927562
  • 财政年份:
    2023
  • 资助金额:
    $ 113.89万
  • 项目类别:
Pregnancy's Microbial Marvels: Unraveling the Intestinal Secrets of Maternal Metabolic Regulation
怀孕期间的微生物奇迹:揭开母体代谢调节的肠道秘密
  • 批准号:
    486884
  • 财政年份:
    2023
  • 资助金额:
    $ 113.89万
  • 项目类别:
    Operating Grants
Unraveling molecular basis of phytochemical accumulation toward improved human health
揭示植物化学物质积累的分子基础以改善人类健康
  • 批准号:
    10514935
  • 财政年份:
    2022
  • 资助金额:
    $ 113.89万
  • 项目类别:
Unraveling the role of osteocytes in metabolic dysfunction associated with obesity
揭示骨细胞在肥胖相关代谢功能障碍中的作用
  • 批准号:
    10618056
  • 财政年份:
    2021
  • 资助金额:
    $ 113.89万
  • 项目类别:
Unraveling the molecular connections that link circadian rhythms and lipid metabolism
揭示昼夜节律和脂质代谢之间的分子联系
  • 批准号:
    10369696
  • 财政年份:
    2021
  • 资助金额:
    $ 113.89万
  • 项目类别:
Unraveling the role of osteocytes in metabolic dysfunction associated with obesity
揭示骨细胞在肥胖相关代谢功能障碍中的作用
  • 批准号:
    10283907
  • 财政年份:
    2021
  • 资助金额:
    $ 113.89万
  • 项目类别:
Unraveling the role of osteocytes in metabolic dysfunction associated with obesity
揭示骨细胞在肥胖相关代谢功能障碍中的作用
  • 批准号:
    10670979
  • 财政年份:
    2021
  • 资助金额:
    $ 113.89万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了