CAREER: Modeling Group Human-Robot Interactions: Towards A Unified Data-Driven Perspective
职业:对群体人机交互进行建模:迈向统一的数据驱动视角
基本信息
- 批准号:2143109
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The long-term research goal of this Faculty Early Career Development (CAREER) grant is to advance Human-Robot Interaction (HRI) so that robots can effectively take part in social encounters with multiple users. While social robotics research has traditionally focused on one-on-one interactions, real-world applications typically require that robots interact in multi-party settings. Examples include robots that are deployed as information providers (in public kiosks or in museums), robots that work with group of people or with individuals, and robots that assist children or elderly people (in homes or elderly care centers). Such real-world contexts led to the emergence of group Human-Robot Interaction as a new area of study. This project is for a data-driven perspective for robot-group interactions that will allow robotic systems to reason about individuals and groups. Additionally, this project includes activities in pursuit of the researcher’s long-term goals of making Computer Science a more diverse and inclusive field, and increasing engagement in science, technology, engineering, and mathematics via Artificial Intelligence technologies. For example, project activities include a partnership with the Yale Peabody Museum to help educate high-school and college students from primarily low-income communities, engage them in research, and engage the general public with Artificial Intelligence and Robotics. These synergistic activities complement the research by providing novel opportunities to study group human-robot interactions. To unify many problems in computationally understanding group HRI, this project comprises a three-pronged approach that addresses: 1) data representation via graph abstractions, 2) learning via Graph Neural Networks, and 3) data collection in a scalable manner via self-supervision. The project will demonstrate this approach in a tangible manner by improving how robots initiate and sustain interactions. First, the team will study the problem of forecasting user engagement with a public robot as an example of reasoning about individuals in consideration of social relationships. Second, it will study the problem of identifying interaction breakdowns in HRI as an example of reasoning holistically about groups. Taken together, this project will demonstrate how the approach can be integrated with robot decision making, validate experimental protocols for data collection and algorithm evaluation in public settings, and advance our understanding of HRI at a fundamental level so that robots can better take part in group social encounters.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CAREER)补助金的长期研究目标是推进人机交互(HRI),以便机器人可以有效地参与与多个用户的社交活动。虽然社交机器人研究传统上专注于一对一的交互,但现实世界的应用通常需要机器人在多方环境中进行交互。例子包括作为信息提供者部署的机器人(在公共信息亭或博物馆中),与人群或个人一起工作的机器人,以及帮助儿童或老人的机器人(在家庭或老年人护理中心)。这样的现实世界的背景下,导致出现的群体人机交互作为一个新的研究领域。这个项目是一个数据驱动的角度为机器人组的互动,将允许机器人系统的原因对个人和团体。此外,该项目还包括追求研究人员的长期目标的活动,使计算机科学成为一个更加多样化和包容性的领域,并通过人工智能技术增加对科学,技术,工程和数学的参与。例如,项目活动包括与耶鲁皮博迪博物馆合作,帮助教育来自低收入社区的高中生和大学生,让他们参与研究,并让公众参与人工智能和机器人技术。这些协同活动通过提供研究群体人机交互的新机会来补充研究。为了统一计算理解组HRI中的许多问题,该项目包括三管齐下的方法,解决了:1)通过图形抽象的数据表示,2)通过图形神经网络的学习,以及3)通过自我监督以可扩展的方式收集数据。该项目将通过改进机器人启动和维持交互的方式,以切实的方式展示这种方法。首先,该团队将研究预测用户与公共机器人的互动问题,作为考虑社会关系对个人进行推理的一个例子。第二,它将研究的问题,确定在HRI的互动故障作为一个例子,推理整体的群体。总之,该项目将展示如何将该方法与机器人决策相结合,验证公共环境中数据收集和算法评估的实验协议,并在基础层面上推进我们对HRI的理解,以便机器人能够更好地参与群体社交活动。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marynel Vazquez其他文献
Marynel Vazquez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marynel Vazquez', 18)}}的其他基金
NRI: FND: Spatial Patterns of Behavior in Human-Robot Interaction Under Environmental Spatial Constraints
NRI:FND:环境空间约束下人机交互行为的空间模式
- 批准号:
1924802 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Customer Choice Modeling with Group Dynamics and Ancillary Pricing
具有群体动态和辅助定价的客户选择建模
- 批准号:
RGPIN-2017-04767 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual
Research Initiation: Advanced Modeling of Metacognitive Problem Solving and Group Effectiveness in Collaborative Engineering Teams
研究启动:协作工程团队中元认知问题解决和团队有效性的高级建模
- 批准号:
2208680 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Modeling the physics of gas removal and star formation quenching in Local Group satellite galaxies with next-generation simulations
通过下一代模拟对本星系群卫星星系中气体去除和恒星形成淬灭的物理过程进行建模
- 批准号:
2102729 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Fellowship Award
Collaborative Research: RI: Small: Modeling and Learning Ethical Principles for Embedding into Group Decision Support Systems
协作研究:RI:小型:建模和学习嵌入群体决策支持系统的道德原则
- 批准号:
2007994 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Modeling and Learning Ethical Principles for Embedding into Group Decision Support Systems
协作研究:RI:小型:建模和学习嵌入群体决策支持系统的道德原则
- 批准号:
2007955 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Modeling and Learning Ethical Principles for Embedding into Group Decision Support Systems
协作研究:RI:小型:建模和学习嵌入群体决策支持系统的道德原则
- 批准号:
2008011 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Customer Choice Modeling with Group Dynamics and Ancillary Pricing
具有群体动态和辅助定价的客户选择建模
- 批准号:
RGPIN-2017-04767 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual
Study on Behavioral and Psychological Symptoms of Dementia by Group-Based Trajectory Modeling for Optimizing Care Model
通过基于群体的轨迹建模优化护理模式研究痴呆症的行为和心理症状
- 批准号:
20K02204 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
III: Small: Collaborative Research: Modeling and Managing Extremist Group Influence in Massive Social Media Networks
III:小型:协作研究:在大规模社交媒体网络中建模和管理极端主义团体的影响力
- 批准号:
1909252 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Customer Choice Modeling with Group Dynamics and Ancillary Pricing
具有群体动态和辅助定价的客户选择建模
- 批准号:
RGPIN-2017-04767 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual