CAREER: A New Science for Biomimetic Microparticles in Drug Delivery Systems: Integrating Protein Polymer Science into Materials Science and Engineering
职业:药物输送系统仿生微粒的新科学:将蛋白质聚合物科学整合到材料科学与工程中
基本信息
- 批准号:2143126
- 负责人:
- 金额:$ 60.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2)NON-TECHNICAL SUMMARY:Millions of patients are treated with intravenous drug injections every year. To ensure efficacy without using drug injections with unnecessarily large amounts that can lead to adverse side effects, nano-/micro-particles has been developed. These particles deliver the drugs from intravenous solutions to a targeted disease location for effective administration with small drug amounts. Yet, the efficacy of the treatment is greatly reduced by biological organ filters, such as kidney or liver, that remove these delivery particles from the bloodstream. To overcome filtering, higher drug doses are still required to ensure efficacy, which again increases adverse side effects. The current particles do not possess mechanical properties to avoid filtering in the bloodstream. However, natural biological particles, such as red blood cells, are known to exhibit the proper mechanical properties to pass through organ filters. Based on this observation, this CAREER project proposes the breakthrough development of drug delivery microparticles based on protein polymers that will mimic the mechanical behavior of materials constituents of natural biological particles. This project combines the fields of materials science and engineering, synthetic biology, and multiscale mechanics to build the foundation of a new science for effective biomimetic microparticles in drug delivery systems. This project also implements the inclusive educational ecosystem and curricular transformations, and offers transdisciplinary research experiences to prepare and train a diverse cohort of students that will form the future U.S. workforce in the integration of materials science and engineering and protein polymer science.TECHNICAL SUMMARY:In current non-biological particle-based drug delivery modalities, up to 90% of the particles are removed by the body’s filtering organs; thus, reducing the efficacy of intravenous treatments of diseases. In contrast, natural biological particles, such as erythrocytes, are immune to organ filtering. Non-biological and biological particles differ in their mechanical behavior, a key property to avoid filtering. The objective of this CAREER project is to design, synthesize and characterize protein-based materials, composed of crosslinked protein copolymers, with tailored mechanical properties that mimic those of constitutive materials of natural biological particles. The research approach combines the revolutionary tools of synthetic biology (the ability of harnessing the power of genetic engineering to fabricate artificially engineered protein copolymers), of materials science and engineering (MSE) and of molecular to macroscale mechanics. With these tools, this research will (1) establish the scientific principles that determine the topology of synthetic protein copolymers with exceptional mechanical properties, (2) investigate the effects of protein copolymer topology on the formation, structure, and bulk mechanical properties of protein-based materials and (3) examine the morphology and in-fluid transport properties of protein-based erythrocyte-mimetic microparticles. This project fills a knowledge gap in biopolymer-network materials regarding multiscale relationships between structures of constitutive mechanical protein copolymers and mechanical response under externally applied forces with an emphasis on reversible stretchability and fatigue resistance. To train the next generation of biopolymer materials scientists and engineers, this project will revolutionize the teaching of biopolymer science in MSE by including design and processing principles of nonconventional materials from biopolymers and synthetic biology in a MSE curriculum and by implementing inclusive student research experiences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金来自2021年美国救援计划法案(公法117-2)非技术性摘要:每年有数百万患者接受静脉注射药物治疗。为了确保疗效而不使用可能导致不良副作用的不必要的大量药物注射,已经开发了纳米/微米颗粒。这些颗粒将药物从静脉内溶液递送到靶向疾病位置,以用于以少量药物有效施用。然而,生物器官过滤器,如肾脏或肝脏,从血流中除去这些递送颗粒,大大降低了治疗的功效。为了克服过滤,仍然需要更高的药物剂量来确保疗效,这再次增加了不良副作用。目前的颗粒不具备机械性能,以避免在血液中过滤。然而,已知天然生物颗粒,例如红细胞,表现出适当的机械特性以通过器官过滤器。基于这一观察结果,该CAREER项目提出了基于蛋白质聚合物的药物递送微粒的突破性发展,该蛋白质聚合物将模仿天然生物颗粒的材料成分的机械行为。该项目结合了材料科学与工程,合成生物学和多尺度力学领域,为药物递送系统中有效的仿生微粒建立了新的科学基础。该项目还实施了包容性的教育生态系统和课程改革,并提供跨学科的研究经验,以准备和培养一批多样化的学生,这些学生将在材料科学与工程和蛋白质聚合物科学的整合方面形成未来的美国劳动力。技术概述:在目前的非生物颗粒基药物递送模式中,高达90%的颗粒被身体的过滤器官去除;从而降低了静脉内治疗疾病的功效。相比之下,天然生物颗粒,如红细胞,对器官过滤免疫。非生物颗粒和生物颗粒在机械行为上有所不同,这是避免过滤的关键属性。这个CAREER项目的目标是设计,合成和表征蛋白质基材料,由交联蛋白质共聚物组成,具有定制的机械性能,模仿天然生物颗粒的组成材料。该研究方法结合了合成生物学(利用基因工程的力量制造人工工程蛋白质共聚物的能力),材料科学与工程(MSE)以及分子到宏观力学的革命性工具。利用这些工具,本研究将(1)建立确定具有特殊机械性能的合成蛋白质共聚物拓扑结构的科学原理,(2)研究蛋白质共聚物拓扑结构对蛋白质基材料的形成,结构和整体机械性能的影响,以及(3)检查基于蛋白质的红细胞模拟微粒的形态和流体传输特性。该项目填补了生物聚合物网络材料的知识空白,涉及构成性机械蛋白质共聚物结构与外部施加力下的机械响应之间的多尺度关系,重点是可逆拉伸性和抗疲劳性。为了培养下一代生物聚合物材料科学家和工程师,该项目将通过在MSE课程中包括生物聚合物和合成生物学的非常规材料的设计和加工原理,并通过实施包容性的学生研究经验,彻底改变MSE中生物聚合物科学的教学。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-Covalently Associated Streptavidin Multi-Arm Nanohubs Exhibit Mechanical and Thermal Stability in Cross-Linked Protein-Network Materials.
- DOI:10.1021/acs.biomac.2c00544
- 发表时间:2022-10-10
- 期刊:
- 影响因子:6.2
- 作者:Knoff, David S.;Kim, Samuel;Cortes, Kareen A. Fajardo;Rivera, Jocelyne;Cathey, Marcus V. J.;Altamirano, Dallas;Camp, Christopher;Kim, Minkyu
- 通讯作者:Kim, Minkyu
Ligand-Mediated Mechanical Enhancement in Protein Complexes at Nano- and Macro-Scale
- DOI:10.1021/acsami.3c14653
- 发表时间:2023-12-19
- 期刊:
- 影响因子:9.5
- 作者:Kim,Samuel;Cathey,Marcus V. J.;Kim,Minkyu
- 通讯作者:Kim,Minkyu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Minkyu Kim其他文献
Quantitative determination of daumone in rat plasma by liquid chromatography-mass spectrometry.
液相色谱-质谱法定量测定大鼠血浆中道莫酮。
- DOI:
10.1016/j.jpba.2011.04.008 - 发表时间:
2011 - 期刊:
- 影响因子:3.4
- 作者:
K. Noh;J. Park;Jong Hee Park;Minkyu Kim;M. Jung;H. Ha;K. Kwon;H. Lee;W. Kang - 通讯作者:
W. Kang
Fundamental understanding of C2H4 production from C2H6 oxidation on stochiometric IrO2(110) surface
对化学计量 IrO2(110) 表面上 C2H6 氧化生成 C2H4 的基本了解
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Da;Minkyu Kim - 通讯作者:
Minkyu Kim
An ECG signal processing algorithm based on removal of wave deflections in time domain
一种基于时域去电波偏转的心电信号处理算法
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Jungkuk Kim;Minkyu Kim;Injae Won;Seungyhul Yang;Kiyoung Lee;W. Huh - 通讯作者:
W. Huh
Ethane Adsorption and Oxidation on IrO2(110) Surfaces
乙烷在 IrO2(110) 表面的吸附和氧化
- DOI:
10.1021/acs.jpcc.3c06836 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jovenal D. Jamir;Jungwon Yun;Connor Pope;Minkyu Kim;A. Asthagiri;J. Weaver - 通讯作者:
J. Weaver
A biomedical signal segmentation algorithm for event detection based on slope tracing
基于斜率追踪的事件检测生物医学信号分割算法
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Jungkuk Kim;Minkyu Kim;Injae Won;Seungyhul Yang;Kiyoung Lee;W. Huh - 通讯作者:
W. Huh
Minkyu Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 60.1万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 60.1万 - 项目类别:
Standard Grant
FDSS Track 1: A New Paradigm for Faculty Development in Geospace Science at Georgia Tech
FDSS Track 1:佐治亚理工学院地球空间科学教师发展的新范式
- 批准号:
2347873 - 财政年份:2024
- 资助金额:
$ 60.1万 - 项目类别:
Continuing Grant
Developing and Testing Innovations: Computer Science Through Engineering Design in New York
开发和测试创新:纽约的工程设计中的计算机科学
- 批准号:
2341962 - 财政年份:2024
- 资助金额:
$ 60.1万 - 项目类别:
Standard Grant
Participant Support for 2024 Gordon Research Conference on Plasma Processing Science (GRC-PPS); Andover, New Hampshire; 21-26 July 2024
2024 年戈登等离子体加工科学研究会议 (GRC-PPS) 的参与者支持;
- 批准号:
2414674 - 财政年份:2024
- 资助金额:
$ 60.1万 - 项目类别:
Standard Grant
Participating in Literacies and Computer Science: A research-practice partnership to explore new computational literacies
参与读写能力和计算机科学:探索新计算读写能力的研究与实践伙伴关系
- 批准号:
2420361 - 财政年份:2024
- 资助金额:
$ 60.1万 - 项目类别:
Standard Grant
Quantum Simulation: A New Era for Materials Science
量子模拟:材料科学的新时代
- 批准号:
10107055 - 财政年份:2024
- 资助金额:
$ 60.1万 - 项目类别:
Small Business Research Initiative
Conference: New horizons in language science: large language models, language structure, and the neural basis of language
会议:语言科学的新视野:大语言模型、语言结构和语言的神经基础
- 批准号:
2418125 - 财政年份:2024
- 资助金额:
$ 60.1万 - 项目类别:
Standard Grant
Collaborative Research: GCR: Growing a New Science of Landscape Terraformation: The Convergence of Rock, Fluids, and Life to form Complex Ecosystems Across Scales
合作研究:GCR:发展景观改造的新科学:岩石、流体和生命的融合形成跨尺度的复杂生态系统
- 批准号:
2426095 - 财政年份:2024
- 资助金额:
$ 60.1万 - 项目类别:
Continuing Grant
IUCRC Phase III New Jersey Institute of Technology: Center for Membrane Applications, Science and Technology (MAST)
IUCRC 第三期新泽西理工学院:膜应用、科学与技术中心 (MAST)
- 批准号:
2310866 - 财政年份:2024
- 资助金额:
$ 60.1万 - 项目类别:
Continuing Grant














{{item.name}}会员




