CAREER:Towards Causal Multi-Modal Understanding with Event Partonomy and Active Perception
职业:通过事件部分和主动感知实现因果多模态理解
基本信息
- 批准号:2143150
- 负责人:
- 金额:$ 51.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Events are central to causal, visual understanding in complex, dynamic environments. From collaborative robots that assist humans with complex tasks to surveillance systems that detect anomalous behavior, there is a need to understand events, their composition, and their interaction for effective machine perception. This project will explore how events are structured in multimodal data and how they can be leveraged to help design better, embodied agents that can construct and leverage compositional event representations to help function in complex, real-world environments. The developed algorithms could have a broad impact in numerous fields including Artificial Intelligence (AI) and education, such as the future of workforce training. In addition to scientific impact, the project performs complementary educational and outreach activities. Specifically, it engages the broader scientific community in the use of AI and computer vision (CV) research to augment the future of workforce training through workshops and seminars, introduces and enhances the AI and CV education at Oklahoma State University, and develops and fosters an entrepreneurial mindset in computer science education and research through integrated educational activities.The research focuses on the ideas of energy-based neuro-symbolic learning, using Grenander’s Pattern Theory formalism, abductive reasoning, and active embodied vision for learning and using temporal causality for richer, multimodal event understanding. The specific research aims of the project are three-fold. First, it seeks to learn the partonomy of common, everyday events by expressing the hierarchical structure in the form of Bayesian Rose Trees, whose semantics are populated by an energy-based pattern theory inference engine. Second, it will research ways to leverage this event partonomy into understanding actions in videos beyond recognition and perceive the current action in the context of the overall task being performed. This inference mechanism will enable an embodied, intelligent agent to recognize the current action and infer higher-level concepts such as human intent and goals in a unified energy-based framework. Third, it will realize the partonomy-based understanding framework in an embodied agent while augmenting it with active multimodal feedback. It will allow the embodied agent to perform active reasoning through feedback from the environment by controlling its geometric parameters (such as position, orientation, and pose) to navigate clutter and resolve any ambiguity in the perceived event structure. This project is jointly funded by Robust Intelligence (RI) Program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
事件是复杂动态环境中因果关系和视觉理解的核心。从协助人类完成复杂任务的协作机器人到检测异常行为的监控系统,都需要了解事件、其组成及其相互作用,以实现有效的机器感知。该项目将探讨事件如何在多模态数据中结构化,以及如何利用它们来帮助设计更好的,具体的代理,可以构建和利用组合事件表示来帮助在复杂的现实环境中发挥作用。所开发的算法可能会在包括人工智能(AI)和教育在内的众多领域产生广泛影响,例如劳动力培训的未来。除了科学影响外,该项目还开展补充性的教育和外联活动。具体而言,它使更广泛的科学界参与人工智能和计算机视觉(CV)研究的使用,以通过研讨会和研讨会来增加劳动力培训的未来,介绍和加强俄克拉荷马州州立大学的人工智能和CV教育,并通过综合教育活动,在计算机科学教育和研究中发展和培养创业精神。研究重点是基于能量的神经网络的想法,符号学习,使用Grenander的模式理论形式主义,溯因推理和积极的具体视觉学习,并使用时间因果关系进行更丰富的多模态事件理解。该项目的具体研究目标有三个方面。首先,它试图通过以贝叶斯玫瑰树的形式表达层次结构来学习常见的日常事件的partonomy,贝叶斯玫瑰树的语义由基于能量的模式理论推理引擎填充。其次,它将研究如何利用此事件partonomy来理解视频中无法识别的动作,并在正在执行的整体任务的背景下感知当前动作。这种推理机制将使具体的智能代理能够识别当前动作并在统一的基于能量的框架中推理更高级别的概念,例如人类意图和目标。第三,它将实现partonomy为基础的理解框架中体现的代理,同时增强它与积极的多模态反馈。它将允许具体代理通过控制其几何参数(如位置,方向和姿势)来导航混乱并解决感知事件结构中的任何模糊性,从而通过来自环境的反馈执行主动推理。该项目由强大的情报(RI)计划和刺激竞争力研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ISD-QA: Iterative Distillation of Commonsense Knowledge from General Language Models for Unsupervised Question Answering
- DOI:10.1109/icpr56361.2022.9956441
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Priyadharsini Ramamurthy;Sathyanarayanan N. Aakur
- 通讯作者:Priyadharsini Ramamurthy;Sathyanarayanan N. Aakur
Bayesian Tracking of Video Graphs Using Joint Kalman Smoothing and Registration
- DOI:10.1007/978-3-031-19833-5_26
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:A. Bal;R. Mounir;Sathyanarayanan N. Aakur;Sudeep Sarkar;Anuj Srivastava
- 通讯作者:A. Bal;R. Mounir;Sathyanarayanan N. Aakur;Sudeep Sarkar;Anuj Srivastava
Actor-centered Representations for Action Localization in Streaming Videos. European Conference on Computer Vision
流视频中动作本地化的以演员为中心的表示。
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Aakur, Sathyanarayanan N.;Sarkar, Sudeep
- 通讯作者:Sarkar, Sudeep
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sathyanarayanan Aakur其他文献
Enhancing corn yield prediction: Optimizing data quality or model complexity?
提高玉米产量预测:优化数据质量还是模型复杂度?
- DOI:
10.1016/j.atech.2024.100671 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:5.700
- 作者:
Yuting Zhou;Shengfang Ma;Huihui Zhang;Sathyanarayanan Aakur - 通讯作者:
Sathyanarayanan Aakur
Sathyanarayanan Aakur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sathyanarayanan Aakur', 18)}}的其他基金
CAREER:Towards Causal Multi-Modal Understanding with Event Partonomy and Active Perception
职业:通过事件部分和主动感知实现因果多模态理解
- 批准号:
2348690 - 财政年份:2023
- 资助金额:
$ 51.42万 - 项目类别:
Continuing Grant
Collaborative Research: RI:Medium:Understanding Events from Streaming Video - Joint Deep and Graph Representations, Commonsense Priors, and Predictive Learning
协作研究:RI:Medium:理解流视频中的事件 - 联合深度和图形表示、常识先验和预测学习
- 批准号:
2348689 - 财政年份:2023
- 资助金额:
$ 51.42万 - 项目类别:
Continuing Grant
Collaborative Research: RI:Medium:Understanding Events from Streaming Video - Joint Deep and Graph Representations, Commonsense Priors, and Predictive Learning
协作研究:RI:Medium:理解流视频中的事件 - 联合深度和图形表示、常识先验和预测学习
- 批准号:
1955230 - 财政年份:2020
- 资助金额:
$ 51.42万 - 项目类别:
Continuing Grant
相似海外基金
PTSD and Autoimmune Disease: Towards Causal Effects, Risk Factors, and Mitigators
创伤后应激障碍 (PTSD) 和自身免疫性疾病:因果效应、危险因素和缓解措施
- 批准号:
10696671 - 财政年份:2023
- 资助金额:
$ 51.42万 - 项目类别:
III: Towards Causal Fair Decision-making
III:走向因果公平决策
- 批准号:
2040971 - 财政年份:2021
- 资助金额:
$ 51.42万 - 项目类别:
Standard Grant
SHF: Small: Towards a Holistic Causal Model for Continuous Software Traceability
SHF:小型:迈向连续软件可追溯性的整体因果模型
- 批准号:
2007246 - 财政年份:2020
- 资助金额:
$ 51.42万 - 项目类别:
Standard Grant
Childhood trauma, stress and suicide: Towards a better understanding of the precise causal mechanisms.
童年创伤、压力和自杀:更好地理解精确的因果机制。
- 批准号:
2113219 - 财政年份:2018
- 资助金额:
$ 51.42万 - 项目类别:
Studentship
Towards an integrated map of causal connections for common, complex diseases
绘制常见、复杂疾病因果关系的综合图
- 批准号:
10263329 - 财政年份:2017
- 资助金额:
$ 51.42万 - 项目类别:
Towards an integrated map of causal connections for common, complex diseases
绘制常见、复杂疾病因果关系的综合图
- 批准号:
9381896 - 财政年份:2017
- 资助金额:
$ 51.42万 - 项目类别:
Towards an integrated map of causal connections for common, complex diseases
绘制常见、复杂疾病因果关系的综合图
- 批准号:
10004664 - 财政年份:2017
- 资助金额:
$ 51.42万 - 项目类别:
Climate Change and International Trade: Towards a Causal Analysis of Carbon Leakage
气候变化与国际贸易:碳泄漏的因果分析
- 批准号:
191151524 - 财政年份:2011
- 资助金额:
$ 51.42万 - 项目类别:
Research Grants
Towards the causal factors underlying the genetic resistance of Atlantic salmon to infectious disease
大西洋鲑鱼对传染病的遗传抗性的致病因素
- 批准号:
BB/H022007/1 - 财政年份:2010
- 资助金额:
$ 51.42万 - 项目类别:
Fellowship
Towards causal real-life insights into mechanisms of risk and resilience for substance use: Incorporating experimental interventions in everyday life (C05*)
对物质使用风险和复原力机制的现实生活因果洞察:在日常生活中纳入实验干预措施 (C05*)
- 批准号:
527321582 - 财政年份:
- 资助金额:
$ 51.42万 - 项目类别:
CRC/Transregios