CAREER: Observing topological magnetoelectric effects by magneto-optics and quantum transport
职业:通过磁光和量子输运观察拓扑磁电效应
基本信息
- 批准号:2143177
- 负责人:
- 金额:$ 89.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL DESCRIPTION: Quantum technologies can solve some of the world’s most challenging problems including medicine design, artificial intelligence and cyber security as well as fundamental physics and chemistry research. Therefore, their realization is crucial for national health, prosperity and security. In order to develop quantum technologies, new materials are needed in which quantum effects are pronounced and therefore can be accessed, controlled and harnessed. This project focuses on a particular quantum mechanical phenomenon called the magnetoelectric effect, which describes the coupling between electricity and quantum mechanical spin. By discovering and exploring novel materials, this project aims to achieve control of quantum spin by electrical means with unprecedented precision, efficiency and robustness. The project pushes the knowledge boundary of quantum physics, with the potential to make completely unexpected discoveries. The project trains next-generation quantum scientists and engineers. Graduates can find employment in academia in the area of fundamental quantum science research and in technology companies pursuing quantum technologies. This project also includes strong educational and outreach activities with particular focus on helping underrepresented groups by collaborating with a historically black research university and promoting STEM in K12 students and among the general public. TECHNICAL DESCRIPTION: This project aims to identify fundamentally new kinds of magnetoelectric effects that are uniquely enabled by the nontrivial topology and Berry curvature in topological materials. In sharp contrast to the magnetoelectric effects found in wide-gap magnetic insulators, the magnetoelectric effects in topological materials can exhibit unprecedented characters such as being quantized, diverging, and dissipationless. The project focuses on three classes of topological phases, Axion insulators, magnetic Weyl semimetals, and gyrotropic superconductors, and the project utilizes magneto-optics, nonlinear optics and quantum transport. The observation of topological magnetoelectric effect represents discoveries of new fundamental quantum physics, which pushes the frontiers of important topics of current quantum condensed matter research including topology, correlation, magnetism and spintronics. The topological magnetoelectric effects also open the door for urgently needed new device principles, most noticeably topological magnetoelectric devices, where simultaneous tuning of electrical and magnetic properties can be achieved without dissipation through a cohesive, multi-disciplinary approach involving electronics, physics and materials. The project contains unique education and outreach activities, including new teaching concepts to bridge and fuse physics and chemistry, collaboration with a historically black research university to create year-long research exchange activity, as well as promoting STEM in K-12 students and the general public by blending quantum science with cultural and art activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:量子技术可以解决世界上一些最挑战的问题,包括医学设计,人工智能和网络安全以及基本的物理和化学研究。因此,他们的认识对于国家健康,繁荣和安全至关重要。为了开发量子技术,需要新材料,其中量子效应明显,因此可以访问,控制和利用。该项目着重于一种称为磁电效应的特定量子机械现象,该现象描述了电和量子机械旋转之间的耦合。通过发现和探索新型材料,该项目旨在以前所未有的精确性,效率和鲁棒性来通过电手段来控制量子自旋。该项目推动了量子物理学的知识边界,并有可能发现完全出乎意料的发现。该项目训练下一代量子科学家和工程师。毕业生可以在基本量子科学研究领域和追求量子技术的技术公司的学术界找到就业。该项目还包括强大的教育和外展活动,特别着眼于通过与历史悠久的黑人研究大学合作并促进K12学生和公众中的STEM来帮助不足的人群。技术描述:该项目旨在识别拓扑材料中的非平凡拓扑和浆果曲率启用的根本新型磁电效应。与在宽间隙磁绝缘子中发现的磁电效应形成鲜明对比,拓扑材料中的磁电效应可以执行前所未有的特征,例如被量化,分歧和耗散量。该项目侧重于三类拓扑阶段,轴突绝缘子,磁性Weyl Semimetals和Gyrotropic超导体,该项目利用磁极,非线性光学元件和量子运输。拓扑磁电效应的观察代表了新的基本量子物理学的发现,这推动了当前量子凝结物质研究重要主题的前沿,包括拓扑,相关,磁性和旋转三位体。拓扑磁电效应还为急需的新设备原理打开了大门,最明显的拓扑磁电器设备可以通过涉及电子,物理和材料的凝聚力,多学科方法来实现电气和磁性的同时调整电气和磁性。该项目包含独特的教育和宣传活动,包括新的教学概念,以桥接和融合物理和化学,与历史上黑人研究的合作,通过将量子科学与文化和艺术活动融为一体,在K-12学生和公众中促进STEM和公众的STEM与文化和艺术活动相结合,这反映了NSF的法定任务和范围的范围通过评估良好的范围,这表明了Quartiacy的范围。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure
- DOI:10.1126/science.adf1506
- 发表时间:2023-06
- 期刊:
- 影响因子:56.9
- 作者:Anyuan Gao;Yu-Fei Liu;Jian-Xiang Qiu;B. Ghosh;Thaís V Trevisan;Y. Onishi;Chaowei Hu;Tiema Qian;Hung-Ju Tien;Shaojuan Chen;Mengqi Huang;Damien Bérubé;Houchen Li;C. Tzschaschel;T. Dinh;Zhengyuan Sun;Sheng-Chin Ho;S. Lien;Bahadur Singh;Kenji Watanabe;T. Taniguchi;D. Bell;Hsin Lin;Tay-Rong Chang;C. Du;A. Bansil;L. Fu;Ni Ni-Ni;P. P. Orth-P.;Qiong Ma;Su-Yang Xu
- 通讯作者:Anyuan Gao;Yu-Fei Liu;Jian-Xiang Qiu;B. Ghosh;Thaís V Trevisan;Y. Onishi;Chaowei Hu;Tiema Qian;Hung-Ju Tien;Shaojuan Chen;Mengqi Huang;Damien Bérubé;Houchen Li;C. Tzschaschel;T. Dinh;Zhengyuan Sun;Sheng-Chin Ho;S. Lien;Bahadur Singh;Kenji Watanabe;T. Taniguchi;D. Bell;Hsin Lin;Tay-Rong Chang;C. Du;A. Bansil;L. Fu;Ni Ni-Ni;P. P. Orth-P.;Qiong Ma;Su-Yang Xu
Axion optical induction of antiferromagnetic order
- DOI:10.1038/s41563-023-01493-5
- 发表时间:2023-03
- 期刊:
- 影响因子:41.2
- 作者:Jian-Xiang Qiu;C. Tzschaschel;J. Ahn;Anyuan Gao;Houchen Li;Xin-Yue Zhang;B. Ghosh;Chaowei Hu;Yu-Xuan Wang;Yu-Fei Liu;Damien Bérubé;T. Dinh;Zhenhao Gong;S. Lien;Sheng-Chin Ho;Bahadur Singh;Kenji Watanabe;T. Taniguchi;D. Bell;Hai-Zhou Lu;A. Bansil;Hsin Lin;Tay-Rong Chang;B. Zhou;Qiong Ma;A. Vishwanath;Ni Ni-Ni;Su-Yang Xu
- 通讯作者:Jian-Xiang Qiu;C. Tzschaschel;J. Ahn;Anyuan Gao;Houchen Li;Xin-Yue Zhang;B. Ghosh;Chaowei Hu;Yu-Xuan Wang;Yu-Fei Liu;Damien Bérubé;T. Dinh;Zhenhao Gong;S. Lien;Sheng-Chin Ho;Bahadur Singh;Kenji Watanabe;T. Taniguchi;D. Bell;Hai-Zhou Lu;A. Bansil;Hsin Lin;Tay-Rong Chang;B. Zhou;Qiong Ma;A. Vishwanath;Ni Ni-Ni;Su-Yang Xu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suyang Xu其他文献
Variations in length of day and inner core differential rotation from gravitational coupling
引力耦合引起的日长和内核差动旋转的变化
- DOI:
10.1016/s0031-9201(99)00090-4 - 发表时间:
2000 - 期刊:
- 影响因子:2.3
- 作者:
Suyang Xu;D. Crossley;A. Szeto - 通讯作者:
A. Szeto
Suyang Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
出生前后多种农药暴露波动轨迹与青春期儿童肥胖的关系:基于一项前瞻性出生队列的观察与机制研究
- 批准号:82373533
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
脉冲磁场作用下7075铝合金定向凝固晶粒细化过程的原位观察和元胞自动机模拟研究
- 批准号:52304415
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
共情人际间传递的计算与神经机制: 观察学习的视角
- 批准号:32300880
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
动作观察想象耦合训练对早期PIGD神经回路的强化重塑与康复机制
- 批准号:82372083
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
丘脑在观察学习及相关疾病中的研究
- 批准号:32371059
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Observing, Creating and Addressing Topological Spin Textures in a Monolayer XY Magnet
观察、创建和解决单层 XY 磁体中的拓扑自旋纹理
- 批准号:
EP/Y023250/1 - 财政年份:2024
- 资助金额:
$ 89.02万 - 项目类别:
Research Grant
Collaborative Research: GreenFjord-FIBER, Observing the Ice-Ocean Interface with Exceptional Resolution
合作研究:GreenFjord-FIBER,以卓越的分辨率观测冰海界面
- 批准号:
2338503 - 财政年份:2024
- 资助金额:
$ 89.02万 - 项目类别:
Standard Grant
Collaborative Research: GreenFjord-FIBER, Observing the Ice-Ocean Interface with Exceptional Resolution
合作研究:GreenFjord-FIBER,以卓越的分辨率观测冰海界面
- 批准号:
2338502 - 财政年份:2024
- 资助金额:
$ 89.02万 - 项目类别:
Standard Grant
AGS-FIRP Track 1: Learning by Doing: Observing the Lake Michigan Lake-Breeze Circulation
AGS-FIRP 轨道 1:边做边学:观察密歇根湖微风环流
- 批准号:
2347093 - 财政年份:2024
- 资助金额:
$ 89.02万 - 项目类别:
Standard Grant
Collaborative Research: EAGER--Evaluation of Optimal Mesonetwork Design for Monitoring and Predicting North American Monsoon (NAM) Convection Using Observing System Simulation
合作研究:EAGER——利用观测系统模拟监测和预测北美季风(NAM)对流的最佳中观网络设计评估
- 批准号:
2308410 - 财政年份:2023
- 资助金额:
$ 89.02万 - 项目类别:
Standard Grant