CAREER: Enriching Conversational Information Retrieval via Mixed-Initiative Interactions
职业:通过混合主动交互丰富对话信息检索
基本信息
- 批准号:2143434
- 负责人:
- 金额:$ 57.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).It has become clear that providing access to information through natural language conversations will play a significant role in the future of search technology. This will be enabled by developing efficient and effective conversational search engines. Existing systems are generally designed based on a query-response paradigm, in which the user initiates the interaction by submitting typing a word or phrase, and the system responds with one or more documents. This process repeats itself until the user either receives a useful response or terminates the search session. This is not an optimal design for interaction. A better approach would be to create search systems that operate like a conversation. In a conversational search systems, for instance, the system may ask a clarifying question or can recommend new information even though it is not an explicit response to the search query. A conversational search system, the conversation should yield the information that is needed to facilitate the ultimate goal of user satisfaction. The mentioned query-response paradigm does not support these natural conversational interactions. This CAREER award aims to advance the state-of-the-art by envisioning solutions that go beyond this query-response paradigm.To achieve this goal, this project studies theoretical and machine learning solutions for generating and handling mixed-initiative interactions in information seeking conversations. In more detail, this project explores the following three research thrusts: (1) developing theoretical foundations for measuring mixed-initiative information seeking conversations; (2) developing models for clarifying the user's information needs which is considered as the most common mixed-initiative interaction type; and (3) developing models for proactive informational contributions to ongoing conversations. In addition to these algorithmic and modeling contributions, this project also develops a number of invaluable resources for advancing the field of conversational information retrieval, including a conversational scholarly assistant agent that will be used as a tool for online experimentation and public data creation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由2021年美国救援计划法案(公法117-2)资助。很明显,通过自然语言对话提供信息访问将在搜索技术的未来发挥重要作用。这将通过开发高效和有效的对话搜索引擎来实现。现有系统通常基于查询-响应范例来设计,其中用户通过提交键入单词或短语来发起交互,并且系统用一个或多个文档来响应。这个过程会不断重复,直到用户收到有用的响应或终止搜索会话。这不是交互的最佳设计。更好的方法是创建像对话一样运行的搜索系统。例如,在对话式搜索系统中,系统可以提出澄清问题,或者可以推荐新信息,即使它不是对搜索查询的明确响应。一个对话式搜索系统,对话应该产生所需的信息,以促进用户满意度的最终目标。上面提到的查询-响应范例不支持这些自然的会话交互。这个CAREER奖项旨在通过设想超越这种查询-响应范式的解决方案来推进最先进的技术。为了实现这一目标,该项目研究了理论和机器学习解决方案,用于在信息寻求对话中生成和处理混合主动交互。更详细地说,本项目探讨了以下三个研究重点:(1)发展测量混合主动信息寻求对话的理论基础;(2)发展模型,以澄清用户的信息需求,这被认为是最常见的混合主动互动类型;(3)发展模型,积极主动的信息贡献正在进行的对话。除了这些算法和建模的贡献,该项目还开发了一些宝贵的资源,以推进对话信息检索领域,包括一个对话学术助理代理,将被用作在线实验和公共数据创建的工具。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Conversational Information Seeking
对话式信息搜寻
- DOI:10.1561/1500000081
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zamani, Hamed;Trippas, Johanne R.;Dalton, Jeff;Radlinski, Filip
- 通讯作者:Radlinski, Filip
Large Language Model Augmented Narrative Driven Recommendations
大语言模型增强叙事驱动的推荐
- DOI:10.1145/3604915
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Mysore, Sheshera;McCallum, Andrew;Zamani, Hamed
- 通讯作者:Zamani, Hamed
Editable User Profiles for Controllable Text Recommendations
用于可控文本推荐的可编辑用户配置文件
- DOI:10.1145/3539618
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Mysore, Sheshera;Jasim, Mahmood;McCallum, Andrew;Zamani, Hamed
- 通讯作者:Zamani, Hamed
A Personalized Dense Retrieval Framework for Unified Information Access
- DOI:10.1145/3539618.3591626
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:Hansi Zeng;Surya Kallumadi;Zaid Alibadi;Rodrigo Nogueira;Hamed Zamani
- 通讯作者:Hansi Zeng;Surya Kallumadi;Zaid Alibadi;Rodrigo Nogueira;Hamed Zamani
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hamed Zamani其他文献
Theoretical Analysis of Interdependent Constraints in Pseudo-Relevance Feedback
伪相关反馈中相互依赖约束的理论分析
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Ali Montazeralghaem;Hamed Zamani;A. Shakery - 通讯作者:
A. Shakery
Neural models for information retrieval without labeled data
- DOI:
10.1145/3458553.3458569 - 发表时间:
2019-12 - 期刊:
- 影响因子:0
- 作者:
Hamed Zamani - 通讯作者:
Hamed Zamani
Comparing the two concentrations of Co0.6 Zn0.4 Fe2O4 nanoparticles coated with dimercaptosuccinic acid based on T2-and T2*- weighted MRI: An animal study
基于 T2 和 T2* 加权 MRI 比较涂有二巯基丁二酸的 Co0.6 Zn0.4 Fe2O4 纳米颗粒的两种浓度:一项动物研究
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:1.7
- 作者:
Leyla Ansari;A. Shahhamzeh;Danial Seifi Makrani;Meysam Haghighi Borujeini;A. Banaei;Hamed Zamani;G. Ataei;S. Abbaspour;A. MehdiZadeh;R. Abedi - 通讯作者:
R. Abedi
An Analysis of Approaches Taken in the ACM RecSys Challenge 2018 for Automatic Music Playlist Continuation
2018 年 ACM RecSys 挑战赛中自动音乐播放列表延续方法的分析
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:5
- 作者:
Hamed Zamani;M. Schedl;Paul Lamere;Ching - 通讯作者:
Ching
Universal Approximation Functions for Fast Learning to Rank: Replacing Expensive Regression Forests with Simple Feed-Forward Networks
用于快速学习排序的通用逼近函数:用简单的前馈网络取代昂贵的回归森林
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Daniel Cohen;John Foley;Hamed Zamani;James Allan;W. Bruce Croft - 通讯作者:
W. Bruce Croft
Hamed Zamani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Enriching Exhibition Stories: Adding Voices to Quire
丰富展览故事:为Quire添加声音
- 批准号:
AH/Y006011/1 - 财政年份:2023
- 资助金额:
$ 57.09万 - 项目类别:
Research Grant
Uncovering the Potential of Aural-Centric Pedagogies in Producing a More Enriching Learning Experience within the Teaching of GCSE-Level History in En
发掘以听觉为中心的教学法在 GCSE 水平历史教学中创造更丰富学习体验的潜力
- 批准号:
2854498 - 财政年份:2023
- 资助金额:
$ 57.09万 - 项目类别:
Studentship
Enriching ECHO Cohorts with High-risk Pregnancies and Children with Disabilities (Enriching ECHO)
丰富高危妊娠和残疾儿童的 ECHO 队列 (Enriching ECHO)
- 批准号:
10746674 - 财政年份:2023
- 资助金额:
$ 57.09万 - 项目类别:
Enriching Online Collaboration with Multimodal Interactions
通过多模式交互丰富在线协作
- 批准号:
RGPIN-2018-04591 - 财政年份:2022
- 资助金额:
$ 57.09万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Elements: Enriching Scholarly Communication with Augmented Reality
合作研究:要素:通过增强现实丰富学术交流
- 批准号:
2209624 - 财政年份:2022
- 资助金额:
$ 57.09万 - 项目类别:
Standard Grant
Beyond parallel corpora: Enriching low-resource machine translation by leveraging language documentation data
超越并行语料库:利用语言文档数据丰富低资源机器翻译
- 批准号:
570119-2022 - 财政年份:2022
- 资助金额:
$ 57.09万 - 项目类别:
Postgraduate Scholarships - Doctoral
Enriching Exhibition Scholarship: Reconciling Knowledge Graphs and Social Media from Newspaper Articles to Twitter
丰富展览奖学金:协调从报纸文章到 Twitter 的知识图谱和社交媒体
- 批准号:
AH/W00559X/1 - 财政年份:2022
- 资助金额:
$ 57.09万 - 项目类别:
Research Grant
The Paradox of Mainstreamed Populists: Enriching the Elite Concept and Renewed Measurements of Populism
主流民粹主义者的悖论:丰富精英概念并重新衡量民粹主义
- 批准号:
22H00810 - 财政年份:2022
- 资助金额:
$ 57.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Enriching MGnify Genomes to capture the full spectrum of the microbiota and bolster taxonomic classifications
丰富 MGnify 基因组以捕获微生物群的全谱并支持分类学分类
- 批准号:
BB/V01868X/1 - 财政年份:2022
- 资助金额:
$ 57.09万 - 项目类别:
Research Grant
Enriching system models and verdicts for testing and verification of software systems
丰富系统模型和判决,用于软件系统的测试和验证
- 批准号:
RGPIN-2016-05626 - 财政年份:2022
- 资助金额:
$ 57.09万 - 项目类别:
Discovery Grants Program - Individual