CAREER: Understanding the Role of Spin-Dynamics in the Formation of Magnetic Microstructure
职业:了解自旋动力学在磁性微结构形成中的作用
基本信息
- 批准号:2143610
- 负责人:
- 金额:$ 68.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in part under the American Rescue Plan Act of 2021 (Public Law 117-2).NONTECHNICAL SUMMARYThis CAREER award supports basic research and education with an aim to understand the magnetic behavior of materials using computer simulations that model their properties at atomic length scales. Magnets are crucial materials that enable modern technologies from electric motors and generators to headphones. However, even the behavior of the most common magnet, iron, is difficult to understand at the atomic scale using existing computational modeling techniques. In this project, the PI and his students will develop new computational methods to accurately describe the coupled evolution of atomic spins and their arrangement within the material using tools of machine learning as applied to materials modeling. The methods will be applied to understanding phase transformations and their connection to magnetic properties in elemental iron and cobalt. The understanding and new knowledge gained from these studies can then be used to guide the development of new magnets by helping to select materials and determine the processes to make the most efficient magnets possible. This award also supports the PI's educational activities at the high school, undergraduate, and graduate levels, as well as community outreach, particularly among under-represented groups. In addition to training graduate and undergraduate students in the area of computational materials modeling, the PI will develop a course in machine learning theory and methods. While most people know that machine learning and magnetism are important, there are a number of misconceptions about what they are and how they work. The PI will work with local secondary schools and adult education groups to provide opportunities to learn more about these topics and help dispel some of the mystery around them. TECHNICAL SUMMARYThis CAREER award supports theoretical and computational research with an aim to understand the interplay between magnetic moment and crystal coordination in determining the magnetic and microstructural properties of materials. Despite numerous attempts, classical molecular dynamics (MD) simulations have failed to adequately capture the behavior of magnetic materials. Even the well-known martensitic transformation of iron from ferrite to austinite is beyond state-of-the-art MD methods, as they are not able to accurately describe the magnetic moment as an environmentally dependent dynamic variable. In this project, the PI and his students will develop the methodology to accurately describe coupled spin and lattice dynamics at the MD scale and apply it to iron and cobalt, enabling a significant advance in the understanding, modeling, and development of magnetic materials. This will be accomplished by using machine learned artificial neural network based interatomic potentials which explicitly consider the spin of individual atoms as a degree of freedom. These potentials will be trained using extensive databases of density functional theory results and used to model phase boundaries in both iron and cobalt, monitoring the role of local magnetic moments in the energetics and stability of such boundaries, and the evolution of these boundaries as phase transformations occur within the material.This award also supports the PI's educational activities at the high school, undergraduate, and graduate levels, as well as community outreach, particularly among under-represented groups. In addition to training graduate and undergraduate students in the area of computational materials modeling, the PI will develop a course in machine learning theory and methods. While most people know that machine learning and magnetism are important, there are a number of misconceptions about what they are and how they work. The PI will work with local secondary schools and adult education groups to provide opportunities to learn more about these topics and help dispel some of the mystery around them.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的部分资金来自2021年美国救援计划法案(公法117-2)。非技术性总结该职业奖支持基础研究和教育,旨在使用计算机模拟来了解材料的磁性行为,这些模拟在原子长度尺度上模拟其属性。磁铁是实现从电动机和发电机到耳机的现代技术的关键材料。然而,即使是最常见的磁铁铁的行为,也很难使用现有的计算建模技术在原子尺度上理解。在这个项目中,PI和他的学生将开发新的计算方法,以准确地描述原子自旋的耦合演化及其在材料中的排列,使用机器学习工具应用于材料建模。这些方法将被应用于理解相变及其与元素铁和钴的磁性的联系。从这些研究中获得的理解和新知识可以用于指导新磁体的开发,帮助选择材料和确定工艺,以使最有效的磁体成为可能。该奖项还支持PI在高中,本科和研究生阶段的教育活动,以及社区外展,特别是在代表性不足的群体中。除了在计算材料建模领域培训研究生和本科生外,PI还将开发机器学习理论和方法课程。虽然大多数人都知道机器学习和磁力很重要,但对于它们是什么以及它们如何工作存在许多误解。PI将与当地中学和成人教育团体合作,提供更多了解这些主题的机会,并帮助消除围绕它们的一些神秘感。该职业奖支持理论和计算研究,旨在了解磁矩和晶体配位之间的相互作用,以确定材料的磁性和微观结构特性。尽管有许多尝试,经典的分子动力学(MD)模拟未能充分捕捉磁性材料的行为。即使是众所周知的铁从铁素体到奥氏体的马氏体转变也超出了最先进的MD方法,因为它们不能准确地将磁矩描述为环境依赖的动态变量。在这个项目中,PI和他的学生将开发方法来准确描述MD尺度下的耦合自旋和晶格动力学,并将其应用于铁和钴,从而在磁性材料的理解,建模和开发方面取得重大进展。这将通过使用基于机器学习的人工神经网络的原子间势来实现,该原子间势明确地将单个原子的自旋视为自由度。这些势能将使用广泛的密度泛函理论结果数据库进行训练,并用于模拟铁和钴的相边界,监测局部磁矩在这种边界的能量学和稳定性中的作用,以及这些边界在材料内发生相变时的演变。该奖项还支持PI在高中,本科和研究生水平的教育活动,以及社区外展,特别是在代表性不足的群体中。除了在计算材料建模领域培训研究生和本科生外,PI还将开发机器学习理论和方法课程。虽然大多数人都知道机器学习和磁力很重要,但对于它们是什么以及它们如何工作存在许多误解。PI将与当地中学和成人教育团体合作,提供更多了解这些主题的机会,并帮助消除围绕它们的一些神秘感。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Doyl Dickel其他文献
Combined Experimental and Computational Failure and Fatigue Analysis of a Socket Drive Adapter
- DOI:
10.1007/s11668-021-01198-4 - 发表时间:
2021-07-08 - 期刊:
- 影响因子:1.200
- 作者:
Jake Reeves;Easton Williams;Channing Plouffe;Cole Staples;William Carlucci;Ryden Smith;Youssef Hammi;Wilbur Whittington;Doyl Dickel;Yucheng Liu - 通讯作者:
Yucheng Liu
Failure Analysis of a M7X1 High-Speed Steel Tap
- DOI:
10.1007/s11668-022-01423-8 - 发表时间:
2022-05-26 - 期刊:
- 影响因子:1.200
- 作者:
Mike Bodden Connor;Morgan Calhoun;Matthew Cohen;Douglas Lum;Magee KaJuana;Sean Toellner;Doyl Dickel - 通讯作者:
Doyl Dickel
Doyl Dickel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Navigating Sustainability: Understanding Environm ent,Social and Governanc e Challenges and Solution s for Chinese Enterprises
in Pakistan's CPEC Framew
ork
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Understanding the Role of "Schadenfreude" in Intergroup Conflict
职业:理解“幸灾乐祸”在群体间冲突中的作用
- 批准号:
2340340 - 财政年份:2024
- 资助金额:
$ 68.26万 - 项目类别:
Continuing Grant
CAREER: Understanding the Role of Citizen Engagement and Multidirectional Information Exchange in Community Resilience to Wildfires
职业:了解公民参与和多向信息交流在社区应对野火的能力中的作用
- 批准号:
2237380 - 财政年份:2023
- 资助金额:
$ 68.26万 - 项目类别:
Standard Grant
CAREER: Understanding the Role of Nanoprecipitates in Advanced Metastable Titanium Alloys
职业:了解纳米沉淀物在先进亚稳钛合金中的作用
- 批准号:
2346524 - 财政年份:2023
- 资助金额:
$ 68.26万 - 项目类别:
Continuing Grant
CAREER: Understanding the Role of Nanoprecipitates in Advanced Metastable Titanium Alloys
职业:了解纳米沉淀物在先进亚稳钛合金中的作用
- 批准号:
2145844 - 财政年份:2022
- 资助金额:
$ 68.26万 - 项目类别:
Continuing Grant
CAREER: Understanding the Stabilizing Role of Muscle-Tendon Units in vivo
职业:了解体内肌肉肌腱单位的稳定作用
- 批准号:
2045394 - 财政年份:2021
- 资助金额:
$ 68.26万 - 项目类别:
Continuing Grant
CAREER: Understanding the Role of Cu-Containing Secondary Phase Particles in Enhancing the Resistance to the Environmental Acceleration to Fatigue in Age-Hardenable Al Alloys
事业:了解含铜第二相颗粒在增强时效硬化铝合金的环境加速疲劳抵抗力方面的作用
- 批准号:
1943870 - 财政年份:2020
- 资助金额:
$ 68.26万 - 项目类别:
Continuing Grant
CAREER: The Role of Groundwater Storage in Earth System Dynamics; Research to Improve Understanding of Current Hydrologic Regimes and Future Climate Response
职业:地下水储存在地球系统动力学中的作用;
- 批准号:
1945195 - 财政年份:2020
- 资助金额:
$ 68.26万 - 项目类别:
Continuing Grant
CAREER: Understanding the Role of Buoyancy Flow for Accurate and Robust Scale Modeling of Upward Flame Spread
职业:了解浮力流在向上火焰蔓延的精确且稳健的比例建模中的作用
- 批准号:
1942282 - 财政年份:2020
- 资助金额:
$ 68.26万 - 项目类别:
Continuing Grant
CAREER: Understanding the Role of Inductive Electric Fields in Particle Energization
职业:了解感应电场在粒子能量化中的作用
- 批准号:
1945573 - 财政年份:2020
- 资助金额:
$ 68.26万 - 项目类别:
Continuing Grant
CAREER: Understanding the role of sensory feedback in gait stability through neurorobotic modeling
职业:通过神经机器人建模了解感觉反馈在步态稳定性中的作用
- 批准号:
1943483 - 财政年份:2020
- 资助金额:
$ 68.26万 - 项目类别:
Continuing Grant